C++ value categories and decltype demystified

David Mazieres

June, 2021

Introduction

Quick C++ quiz:

o Which of the following C++ functions is incorrect and leads to dangerous undefined
behavior if you use the return value?

decltype (auto)
fn A(int i)
{

return i;

}

decltype (auto)
fn B(int i)
{

return (i);

}

decltype (auto)
fn_C(int 1)
{

return (i+1);

}

decltype (auto)
fn D(int i)
{

return i++;

}

decltype (auto)
fn E(int 1)
{

return ++i;

}

decltype (auto)
fn F(int 1)
{
return (i >= 0 7 i : 0);

b

decltype(auto)
fn_G(int i, int j)
{
return i >= j 7 1i : j;

b

struct S {
int i = 0;

+;

decltype (auto)
fn HO
{

return (S{});
}

decltype (auto)
fn 10
{

return (S{}.i);
}

The answer is that fn_B, fn E, fn G, and fn_I are bad code. The bad functions return
references to variables that go out of scope when the function returns. As of this writing, gcc
and clang warn about different subsets of the bad functions.

Now obviously all of the above functions, whether buggy or not, should have been written
to return auto instead of decltype(auto). So is the lesson just to avoid decltype because
it adds reference types in unintuitive ways? Unfortunately not, because there are other
places in the language where you can’t avoid the “decltype logic,” notably in C+4-20 requires
expressions. Consider the following function:

#include <concepts>

// Attempt to add integer to arbitrary type TA
template<typename TA, typename TB> auto
add(TA a, TB b)
requires requires {
// ok:
{ a+ b} -> std::same_as<TA>;
// incorrect (should be std::same_as<inté>):
{ b } -> std::same_as<int>;

https://en.cppreference.com/w/cpp/language/constraints#Requires_expressions
https://en.cppreference.com/w/cpp/language/constraints#Requires_expressions

return a += b;

}

Why is it that add(1,2) is ill-formed (though as of this writing accepted by clang)? add
uses a requires expression to try to limit the types of its arguments. The first occurrence
of the requires keyword introduces a requires clause to restrict what types TA and TB
are acceptable. The second requires introduces a requires erpression inside the requires
clause. A requires expression can include several forms of requirement, and here we are using
compound requirements which state that a particular expression must have a type fulfilling a
particular concept. Specifically, we are requiring that decltype((a+b)) be the same type as
TA and that decltype((b)) be the same type as int. That’s true in the former case but not
the latter, because decltype ((b)) is actually the type int&.'

Examples aside, the real issue here is that C++’s rules for inferring reference types are fairly
unintuitive and hard to learn. I attribute the problem to three main factors:

1. Out of reluctance to introduce new keywords, the C++ language committee gave
decltype two entirely different purposes that are related enough to be confusing and
lead to bad typos.

2. Every expression in C++ has both a type and a value category, and the two are fiendishly
non-orthogonal.

3. C++ references are analogous to symbolic links in a file system... except, instead of
making symbolic links transparently look like files, C++ makes files transparently look
like symbolic links. This isn’t a natural way to think of things.

In practice, #1 and #3 are aren’t particularly hard to learn, it’s just a question of rewiring
your intuition to match the twisted logic of the C++ language specification.

#2 is a different story. Every expression has one of three value categories: [value, prvalue, or
zvalue. The result of decltype on expressions is defined to depend on the value category of
the expression. Unfortunately, the official definition of value categories is a tangled mess in
the language specification. For instance, an informative note in the section introducing value
categories optimistically reads:

The discussion of each built-in operator in [expr.compound] indicates the category
of the value it yields and the value categories of the operands it expects. For
example, the built-in assignment operators expect that the left operand is an
lvalue and that the right operand is a prvalue and yield an lvalue as the result.

From the quote, you might expect to be able to slog through 30 pages of [expr.compound|

"Why not just declare add(TA a, int b) to take an integer? That might or might not be better.
If you want to catch errors by disallowing expressions such as add("hello", '!') where the second
argument is a type (e.g., char) that gets promoted to int, then it may be useful to make b a template type.
(Admittedly, in that case it’s still simpler to say requires std::same_as<TB, int> && requires { { a
+ b } -> std::same_as<TA>; }.)

https://bugs.llvm.org/show_bug.cgi?id=45088
https://en.cppreference.com/w/cpp/language/constraints
https://timsong-cpp.github.io/cppwp/n4861/basic.lval#2
https://timsong-cpp.github.io/cppwp/n4861/expr.compound
https://timsong-cpp.github.io/cppwp/n4861/expr.compound

and find an unambiguous specification for the value category of each operand and result of a
built-in operator. Or, since life’s not perfect, you might at least hope to find a normative
requirement that “the built-in assignment operators expect... the right operand is a prvalue.”
Well if so, you'd be disappointed.?

The upshot is that I've spent way too much time staring at rules on the Value categories page
of cppreference.com, then trying to substantiate them by clicking through from [expr.prop] to
other parts of the standard. I found things organized in a way that was difficult to internalize
and remember. And I've hit bugs around value category in both clang and gcc, so I don’t
just “trust the compiler”—when these bugs are fixed, code will break.

Fortunately, almost every expression has what I'll call an “expression decltype” that unam-
biguously implies its value category.®> Moreover, we can reformulate the rules for expression
decltype in a way that just subsumes value categories.

There are several reasons expression decltypes are easier to think about than value categories.
First, in some cases (such as casts), the expression decltype is explicit and maybe even
textually part of the expression. Second, the expression decltypes of built-in operators are
analogous to the return types of overloaded operators. Thus, programmers accustomed to
operator overloading should find them intuitive (except maybe for the conditional ternary
operator E1 7 E2 : E3). Finally, while Ivalue, prvalue, and xvalue are kind of abstract
concepts, you can use the compiler to check the decltype of an expression.

This blog post is my attempt to refactor expression decltype and value categories in a way that
is easier to remember and understand. First, I'll go over the official definition of decltype.
Next, I'll explain and motivate value categories at a high level and explain why they matter.
Finally, I'll propose my new and (I hope) easier to internalize algorithm for determining
expression decltype.

decltype overview

Before getting into value categories, let’s review what decltype does. Though there’s only one
keyword, the syntax decltype(E) performs one of two entirely different type calculations
depending on E:

1. If E is an unparenthesized id-ezpression (e.g., x, s.field, S: :field), then decltype (E)
returns the exact type with which the variable, field, or non-type template parameter
was declared, including an lvalue or rvalue reference if and only if the variable or field
was declared as one. This is a bit like the Istat(2) system call, which is one of the few
ways to differentiate between files and symbolic links in the file system.

2I think the whole [expr.compound] section only makes sense if unspecified operands and results default
to prvalue, so in that sense not mentioning the value category of the right-hand operand of = could officially
make it a prvalue, but I haven’t (yet) found any normative language supporting this conjecture.

3The exception is the function part of a non-static member function invocation (e.g., s.method,
s.*method_ptr, p->method, p->*method_ptr). It’s not legal to use decltype on such expressions—in
fact, the only thing you can do is invoke them—but for what it’s worth they are considered prvalues.

https://timsong-cpp.github.io/cppwp/n4861/expr.compound#expr.ass
https://en.cppreference.com/w/cpp/language/value_category
https://timsong-cpp.github.io/cppwp/n4861/expr.prop
https://bugs.llvm.org/show_bug.cgi?id=45088
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100946
https://timsong-cpp.github.io/cppwp/n4861/dcl.type.decltype#:decltype
https://timsong-cpp.github.io/cppwp/n4861/expr.compound
https://timsong-cpp.github.io/cppwp/n4861/expr.ref#6.3.2

Let’s call this first calculation variable decltype, since it gives us the type with which
a variable (or field) was declared.

2. If E is anything else, including a parenthesized id-expression (e.g., (x), (s.field)),
then C++4 makes any reference in E’s type completely transparent and undetectable
(think stat(2), not Istat). So decltype(E) takes the underlying, non-reference type
T of E and decides whether to make it a reference as follows: If E is a prvalue, then
decltype(E) is just T; if E is an lvalue, then decltype(E) is T&; and if E is an xvalue,
then decltype(E) is T&&.

Let’s call this second calculation expression decltype, or, to coin a clunky abbreviation,
exprtype. Later on, I'll provide an equivalent formulation that does not depend on
value categories, in which case we can run the above rule backwards and say an
expression E is a prvalue if decltype((E)) is a non-reference type T, an lvalue if
decltype((E)) is T&, and an xvalue if decltype((E)) is T&&.

The two decltype rules are why fn_A above (with return i) is safe, while fn_B (with
return (i)) is not. The unparenthesized return expression i in fn_A indicates the use of
variable decltype (“Istat”), so the return type is i’s exact type, namely int. In fn_B, by
contrast, the return expression (i) indicates expression decltype, so C+-+ says, “I must hide
whether or not i was declared as a reference, and since I can convert the expression to int&,
I'll do so regardless of how i was actually declared.”

There is a rationale for this logic: prvalue expressions such as a literal int (0) or a function
call returning int (getpid()) cannot be converted to an lvalue reference such as int&.
Prvalues also cannot be used in certain contexts where an lvalue reference would be valid
(e.g., getpid() = 5 [wrong], or int *p = &5 [wrong]). By contrast, an lvalue or xvalue can
be converted to a prvalue if necessary. In a sense, providing an lvalue reference whenever
possible gives you the most powerful applicable type for a given expression. But it’s certainly
unintuitive until you've learned the rule.

Towards safer use of decltype

If the dual-purpose decltype keyword seems error-prone and you are concerned about bugs
from accidentally using the wrong type calculation, a solution may be to program in a stylized
way that protects you from simple errors. There’s ample precedent for such an approach. For
example, it’s now considered bad practice to write “if (x = y)”; we write “if ((x = y))”
to show that, yes, we really intended to do an assignment inside the conditional. When gcc
first started warning about assignments in conditionals in the 1990s, I found it offensively
paternalistic. In retrospect, the feature has painlessly caught some typos in my code that
would have taken a lot more work to debug at runtime.

One easy thing to do would be to define an exprtype macro and always use it when you
want expression decltype:

#define exprtype(E) decltype((E))

This at least makes programmer intent explicit: if you aren’t calling exprtype, you want

https://timsong-cpp.github.io/cppwp/n4861/conv.lval

variable decltype, not expression decltype. Unfortunately, the dangerous case is generally
that you wanted variable decltype and got expression decltype. So what can you do when
you don’t want expression decltype? Here are a couple of ideas depending on what you really
want.

In some cases, you may actually want neither variable nor expression decltype. In particular,
you may want the non-reference type of a variable regardless of whether the variable itself
was declared as a reference. The type inference for auto variables, auto return types, and
non-reference function-template arguments works this way. The <type_traits> header
has a decay template that emulates the parameter-passing type transformation, essentially
removing references and const/volatile qualifications from a type and converting arrays to
pointers. To get these rules, you could define:

#define autotype(v) std::decay_t<decltype(v)>

On the other hand, if you really want variable decltype, you could define a macro specifically
for the purpose, like this:

#define IGNORE(x) // causes error if invoked with 2 arguments
#define APPLY IGNORE(x) IGNORE(x)

#define PARENTHESIZED TO COMMA(x) ,

#define vdecltype(v) APPLY IGNORE(PARENTHESIZED TO COMMA v) decltype (v)

The vdecltype macro causes a compilation error by calling the single-argument IGNORE
macro with two arguments if the argument v is parenthesized.® Unfortunately, this won’t
catch cases such as vdecltype (++v), which would compile and be a reference type, but at
least the use of vdecltype makes intent clear and would be amenable to static checking.

I don’t know the best answer, but it stands to reason that some sort of convention around
how to invoke decltype for its different purposes could improve the robustness of C++ code.

Value categories

C++ organizes value categories into the hierarchy depicted above [fig:basic.lval]. T’ll define
and motivate the categories at a high level, but I won’t reproduce the categorization rules
from the standard because I think it’s better to think of value categories as synonymous with
reference qualifiers on expression decltypes:

expression decltype value category

non-reference T prvalue
lvalue reference T& lvalue
rvalue reference T&& xvalue

Nonetheless, understanding value categories at a high level, and understanding the role they
play in the language, will help motivate the reference qualifiers on expression decltypes.

4See my previous blog post on how macros work if you are wondering why we need APPLY_IGNORE.

https://en.cppreference.com/w/cpp/types/decay
https://timsong-cpp.github.io/cppwp/n4861/expr.prop#fig:basic.lval
https://www.scs.stanford.edu/~dm/blog/va-opt.html

expression

N

glvalue rvalue

NN

lvalue xvalue prvalue

Figure 1: Expression category taxonomy

o As of C++417, a prvalue (“pure rvalue”) of type T is an abstract recipe for initializing
an object of type T (unless T is void). A prvalue does not correspond to an actual object
of type T in your program. Nor does it require constructor invocation. Literal constants
such as 5, true, nullptr, and enum tags are prvalues because they initialize objects
and operands. For example, the prvalue 5 initializes x in “int x = 57, initializes
the right-hand operand of + in “y + 5”7, and initializes the function argument in
“std::to_string(5)”. You cannot modify a prvalue (true = 1 [wrong]) or take its
address (&this [wrong]).

2

When you write “auto s = std::string("hello world");”, the cast expression
std: :string("hello world") is a prvalue. Evaluating the prvalue does not cre-
ate a string object or invoke the std: :string(const char*) constructor. If it did, s
would need to be move-constructed from the already-constructed prvalue. Instead, s is
constructed directly from the argument "hello world". The object that is ultimately
initialized by a prvalue (in this case s) is known as the prvalue’s result object, and the
value used to initialize the result object is the prvalue’s result.’

5T find the term “prvalue result” kind of confusing. Obviously the result of prvalue 2+2 is the abstract
int 4. But what’s the result of prvalue £ () in the following code?
struct T {
std::chrono::high_resolution_clock::time_point point =
std::chrono: :high_resolution_clock: :now();

£0O
{
return T{};
}
£ ()’s result is effectively “whatever the current time will be when you eventually materialize this prvalue,”
which is a strange thing to call a “result.”

https://timsong-cpp.github.io/cppwp/n4861/basic.lval#5

Compilers try to defer “materializing” prvalues as long as possible to avoid unnecessary
moves and copies, particularly when handling function return values. A prvalue
must eventually be materialized even if its value is discarded, however, so deferring
materialization can elide only copy and move constructors, not other constructors.

o A glvalue is an actual object in your program, constructed with a constructor call if
its type is not trivially constructible. (The constructor doesn’t have to have returned
yet.) The specification says a glvalue’s “evaluation determines the identity of an object,
bit field, or function.” This means you can generally take a glvalue’s address (except
bitfields). You can also assign to a non-const glvalue unless it is a function or a
user-defined class with a deleted or inaccessible operator=.

e An xvalue (“expiring glvalue”) is a glvalue whose value will soon not matter, for
instance because it is a temporary object about to be destroyed at the end of the
current full-expression. Xvalues are what make move construction possible: if you no
longer care about the contents of an expiring object, you can often move its contents
into another object much more efficiently than if you needed to preserve the expiring
object’s value. As you might expect, std: :move transforms its argument into an xvalue.

e An lvalue is just a glvalue that is not an xvalue. The archetypal lvalue expression is
a variable, but things that behave like variables are lvalues, too, such as class data
members and function calls returning lvalue references.

o An rvalue is just a prvalue or xvalue.

Why value categories matter

Because a prvalue must be materialized to initialize its result object, it must be a complete
type and not an undefined forward-declared struct. Similarly, a prvalue cannot be a pure
virtual class, since such classes cannot be constructed other than as superclasses. Also, only
class and array prvalues can meaningfully have const or volatile qualification. There
wouldn’t be much point in a const int prvalue, as it would initialize an int lvalue just well
as a plain int prvalue could. By contrast, a glvalue need not be a complete type and can
have const and volatile qualification for more than just class and array types.

Built-in operators expect particular value categories for their operands and have particular
value categories for their results. For example, an arithmetic operator such as binary +
expects prvalues for both operands and produces a prvalue result. This isn’t surprising, since
you can supply an integer literal as the argument to +, and you also can’t assign to or take
the address of the result. Built-in = expects an lvalue on the left and a prvalue on the right,
and results in an lvalue.

Of course, even though + has prvalue operands, x + 1 is still a valid expression when x is
an lvalue. The reason is that a glvalue other than a function or array can be converted to a
prvalue of the same type through a process confusingly named lvalue-to-rvalue conversion.
If you recall, a prvalue is really a recipe for initializing an object. When converting from
non-class glvalues such as ints, this recipe is to initialize the new int from the value of the
old one. When converting class types, the recipe is to copy- or move-initialize a new instance

https://timsong-cpp.github.io/cppwp/n4861/class.temporary#2.6
https://timsong-cpp.github.io/cppwp/n4861/basic.lval#1.1
https://timsong-cpp.github.io/cppwp/n4861/class.temporary#4
https://timsong-cpp.github.io/cppwp/n4861/class.temporary#4
https://timsong-cpp.github.io/cppwp/n4861/expr.type#2
https://timsong-cpp.github.io/cppwp/n4861/expr.type#2
https://timsong-cpp.github.io/cppwp/n4861/conv.lval

of the class from a particular existing glvalue. (This is presumably why class-type prvalues
can have const and volatile qualifiers—they reflect the type of the old glvalue from which
the new one should be initialized.)

An expression’s value category determines what references the expression may initialize.
Specifically, if T is a non-reference type, then:

e T& can be initialized only from lvalues

o T&& can be initialized only from rvalues

e const T& can be initialized from any value category, but overload resolution will prefer
T&& over const T& for rvalues if there are functions accepting both. (This is why copy
constructors can fill the role of a missing move constructor.)

Note that when binding a prvalue to a reference, it must be materialized into a temporary
object. Generally, a temporary object is destroyed at the end of the full expression, which
would leave a dangling reference. To avoid this, C++ extends the lifetime of temporary
objects that are bound to references, so that they survive until the reference goes out of
scope.

The reference binding rules mostly explain which functions can be selected in overload
resolution for arguments of what value category. For instance, you can’t pass prvalue 5 to a
function expecting an int&, but you can pass it to a function expecting a const int& or
an int&&. However, there’s one rule that doesn’t fit the logic, namely a function template
argument seemingly expecting a non-const, non-volatile rvalue reference to a simple typename
function template parameter:

template<typename T> decltype(auto)
f(T&& t)
{
return g(std::forward<T>(t));
+

A function parameter such as T&& t is known as a forwarding reference. It matches arguments
of any value category, making t an lvalue reference if the supplied argument was an lvalue or
an rvalue reference if the supplied argument was an rvalue. If Uis t’s underlying non-reference
type (namely std: :remove_reference_t<decltype(t)>), then T will be inferred as U& for
an lvalue argument and U for an rvalue. (Through reference collapsing, if T is U&, then
T&& is also U&.) Regardless of t’s variable decltype, its expression decltype is always an
lvalue reference; that’s why you always need to provide an explicit template argument to
std: :forward.

Note that in the example, £ actually demonstrates an appropriate use of decltype (auto)
return type to preserve the value category of g’s result (including prvalue). Note also that
except for initializer lists, auto bindings use the same type deduction rules as function
templates. Hence, “auto &&x = £()” is another form of forwarding reference.

Now if we treat value categories as synonymous with reference qualification on expression
decltypes, then there’s a much simpler way to describe the value category of built-in operators.

https://timsong-cpp.github.io/cppwp/n4861/class.temporary#4
https://timsong-cpp.github.io/cppwp/n4861/class.temporary#6
https://timsong-cpp.github.io/cppwp/n4861/temp.deduct.call#3
https://timsong-cpp.github.io/cppwp/n4861/dcl.ref#6
https://timsong-cpp.github.io/cppwp/n4861/dcl.type.auto.deduct#4

We can say + and = behave as if there were built-in functions declared like the following (even
though these are obviously not valid code):

int operator+(int, int);
int& int::operator=(int);

Given that most C++ programmers already understand operator overloading, wouldn’t it be
clearer to express the value category rules for built-in operators using the same vocabulary
as user-defined functions? Expression decltype gets us pretty close to this.

Testing with the compiler

Since value category is just synonymous with the reference qualification on expression decltype,
we can get the compiler to tell us the value categories of expressions. All we need to do
is invoke expression decltype decltype((E)), and use this as a template argument to a
template variable that is specialized on reference types. Using this technique, we can figure
out which of the functions at the top of this blog post are bad. The function calls that are
prvalues are safe, while the lvalues and xvalue are bad, since they are returning references to
values that have gone out of scope.

template<typename T> constexpr const char *category = "prvalue";
template<typename T> constexpr const char *category<T&> = "lvalue";
template<typename T> constexpr const char *category<T&&> = "xvalue";

#define SHOW(E) std::cout << #E << ": " << category<decltype((E))> << std::endl
int

main()

{

SHOW(fn_A(0));
SHOW (fn_B(0));
SHOW (fn_C(0));
SHOW (fn_D(0));
SHOW (fn_E(0));
SHOW (fn_F(0));
SHOW(fn_G(0,1));
SHOW (fn H(O)) ;
SHOW(fn_I());
}

output:

fn_A(0): prvalue
fn B(0): 1lvalue
fn_C(0): prvalue
fn_D(0): prvalue
fn_E(0): lvalue

10

fn _F(0): prvalue
fn _G(0,1): 1lvalue
fn HQ: prvalue
fn_ IO : xvalue

Here’s the code if you want to play with it.

Recall that forwarding references are only for function template arguments, so the specializa-
tion category<T&&> is not a forwarding reference.

Simplified rules for expression decltype

Here is my recipe for determining decltype((E)), the “exprtype” of expression E. For the
purposes of this blog post, we care less about decltype((E))’s underlying non-reference
type T, and more about whether decltype((E)) is T, T&, or T&&. Generally T itself is either
obvious or the result of complicated implicit conversion rules that will have to be the subject
of a future blog post.

At a high-level, there are three cases to consider: special-cases, named values, and unnamed
values. The special cases are string literals and functions, whose exprtype is always the
corresponding lvalue reference T& Named values consist of variables, data members, and
array elements. These have exprtype T& unless they would be destroyed by destroying some
containing struct or array that has non-lvalue-reference exprtype, in which case they have
exprtype T&&. Finally, unnamed values have the same exprtype as their normal C++ type.
Unnamed values can be broken down into two subcases: expressions with an obvious explicit
type (e.g., casts and function calls), and ones where you have to think about what a built-in
operator does.

I hope the intuition from the previous paragraph is already enough to figure out the vast
majority of exprtypes in your head, but since this is all a bit unintuitive and there are
some hard cases (ternary operator), let me spell it out in a lot more detail with some added
rationale:

» special lvalues. Unlike other types, string literals, functions, and references to function
always have an exprtype of lvalue reference.

E decltype ((E))
"hello" const char (&) [6]
getpid int (&) O
static_cast<int (&) O>(getpid) int(&))

std: :move (getpid) int (&) O

Because a string literal is a char[] in memory and a function is instructions in memory,
neither can be a prvalue, so it does not make sense to give them non-reference decltype.
Moreover, both string literals and functions have the lifetime of the entire program, so

11

./declcat.cc
https://en.cppreference.com/w/c/language/conversion

it does not make sense to move them, which is the point of rvalue references. So that
leaves lvalue reference as the only sensible exprtype.

named values If E is the value of a variable, a data member in a class or union, or
an array member, then it corresponds to a real, constructed object and cannot be a
prvalue. Hence, E’s exprtype must be a reference. In this case:

— If E resides in an object whose exprtype is not an lvalue reference and E’s variable
decltype is not a reference, then E’s exprtype is an rvalue reference

— Otherwise, E’s exprtype is an lvalue reference.
For example:

int v;
int &vref = v;
int al[10];

struct S {

static int static_member;

int data_member = O;

int &lref = static_member;

int &&rref = std::move(static_member) ;
};
S s;
S £0);
S &lvE();
int S::*fieldp = &S::data_member;

E decltype ((E))
v int&

vref int&

a int (&) [10]
a[5] int&
S::static_member int&
s.data_member int&
S::data_member int&
s.*fieldp int&
s.lref int&
s.rref int&

1vf () .data_member int&

v () .lref int&

1vEf() .rref int&
f().lref int&

f(Q) .rref int&
S{}.1lref int&
S{}.rref int&

12

E decltype ((E))

S{}.data_member int&&

S{}.*fieldp int&
f() .data_member int&&
f().*fieldp int&&

std: :move(a) [5] int&&

An unintuitive consequence of this rule is that the reference qualification on E’s expression
decltype is generally independent of that on its wvariable decltype. For example, v and
vref have the same exprtype, as do s.1lref and s.rref. The one exception is inside
objects with non-lvalue exprtype. f().data member has exprtype int&&, because it
resides within £ ()’s return value, which is of non-reference exprtype S, so since £()’s
return value is expiring, so is £ () .data_member. By contrast, £() .1ref and £() .rref
both have int& exprtype because the ints they reference won’t be destroyed when
the S object returned by £ is destroyed. To push further on the file system analogy,
destroying a class or array is like recursively deleting a directory—only the regular files
in the directory will expire, not the files named by symbolic links in that directory.

A tricky case worth explaining is why a non-static data member such as S: :data_member
is always an lvalue. Inside a method of S, the expression S: :data_member is equivalent
to (xthis).S::data_member, which more obviously has exprtype int&. Outside of
S, it is not legal to evaluate S::data_member, but the expression is still an lvalue
in unevaluated contexts such as decltype((S::data_member)). It can even be used
inside of prvalue expressions like decltype(S::data_member + 5). (To put this in
perspective, it’s okay to write sizeof (S::data_member + 42) as well.)

explicitly typed values. When an unnamed value expression E has an explicit type,
E’s exprtype is the type of the expression. More specifically:

— All literals (except string literals), enum tags, this, and non-type template
arguments have exprtype identical to their type (with no references added).

E decltype ((E))

true bool

5 int

'A' char

nullptr std::nullptr_t

enum tag corresponding enum type

this inside T: :method() T* or const Tx

— Function calls, including overloaded operators, have exprtype identical to the
function’s return type.

13

https://timsong-cpp.github.io/cppwp/n4861/expr.prim#id-2.3

int v;

E decltype ((E))

std: :terminate() void

std::to_string(5) std: :string

std: :move (v) int&&

co_await a decltype(a.await_resume())

std::string("hello") + " world" std::string

— The exprtype of casts and type conversions is exactly the destination type.

E decltype ((E))

double(1) double
static_cast<int&>(v) int&
static_cast<int&&>(v) int&&
std::string{"hello"} std::string

— new’s exprtype is pointer to the type requested.

E decltype ((E))

new T T*

e built-in operators. Implicitly-typed built-in operators have types analogous to how
you would overload them for user-defined types.

— The ternary operator E1 ? E2 : E3is the one exception, since you cannot overload
it. It attempts to unify the types and const/volatile qualifiers of the exprtypes
of E2 and E3. It will use a common reference type if it can find one, which is why
fn_G at the beginning of the blog post returns a reference (both E2 and E3 have
exprtype int&, which can be unified). By contrast, fn_F unifies int& and int,
which can only be an int, not an int&, so fn_F returns int.

Note: the ternary operator is the only implicitly-typed built-in operator capable
of having an rvalue reference exprtype.

— Pointer dereferencing (*p) a pointer of type T* has exprtype T&.

— All other built-in operator expressions that don’t modify their arguments have
a non-reference exprtype identical to the type of the result value. This includes
arithmetic (a+b, -a) and bit (alb, a<<b, ~a) operations, where the exprtype
is either identical to the operands or the result of implicit conversion. It in-
cludes logical (a&&b, 'a) and comparison (a==b) operators, whose exprtype

14

https://timsong-cpp.github.io/cppwp/n4861/expr.type.conv
https://en.cppreference.com/w/c/language/conversion

is bool (or std::strong ordering/std::partial_ordering for <=> on non-
floating point/floating point types). It also includes address-of (&a) with exprtype
T* where T is the underlying non-reference type of a.

— Assignment (=, +=, etc.) operators have an exprtype of lvalue reference to the
type of the left-hand operand’s type.

— Pre-increment /pre-decrement (++c, --c), have an exprtype of lvalue reference to
the type of the operand.

— Post-increment and post-decrement (c++, c--) have exprtype identical to the
non-reference type of the operand (since they must return a value that is no longer
the value of the operand, this value has no inherent place to live and must be a
prvalue).

— throw and delete have exprtype void.
— sizeof (E) has exprtype std::size_t.

— typeid(v) has exprtype const std::type_info&.

Conclusion

C++ is notoriously hard to learn in part because it has so many ad-hoc rules that can’t be
rederived from first principles. Nonetheless, at least some of the complexity arises from poor
organization of the language specification, rather than the language itself. This can be fixed
if we explain the language differently, particularly when the language itself is improved, as
happened with prvalues in C++17.

In this post, I argued that value categories and expression decltype are two concepts that
really should be one. I hope that presenting them in a unified way makes them more intuitive
and easier to learn by leveraging the understanding most C++ programmers already of
operator overloading and function types.

15

	Introduction
	decltype overview
	Towards safer use of decltype

	Value categories
	Why value categories matter
	Testing with the compiler

	Simplified rules for expression decltype
	Conclusion

