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Introduction

Wouldn'’t it be nice if you could define pretty-printable enums in C+-+7 Well, in C++4-20,
you can define a macro that both creates an enum type and defines a function converting the
enum values to strings. Here’s an example of such a macro in action:

MAKE_ENUM(MyType, ZERO, ONE, TWO, THREE);

void
test (MyType e)
{
std::cout << to_cstring(e) << " = " << e << std::endl;

}

int

main()

{
test (ZERO) ;
test (ONE) ;
test (TWO) ;
test (THREE) ;

+

Output:

ZERO = 0
ONE =
WO =
THREE

N =

3

The key to making this work is a new pre-processor feature in C++20, __VA_OPT__(x), which
expands to x when a variable-argument macro has more than zero arguments and to nothing
otherwise. This is exactly what you need to implement the base case in recursive macros,
allowing things like a FOR_EACH macro that applies another macro to each of its arguments.
Here’s how you can define MAKE_ENUM in terms of FOR_EACH:



#define ENUM CASE(name) case name: return #name;

#define MAKE_ENUM(type, ...)
enum type {
__VA_ARGS__
s
constexpr const char *
to_cstring(type _e)
{
using enum type;
switch (_e) {
FOR_EACH(ENUM_CASE, __VA_ARGS__)
default:
return "unknown";
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}
}

The full code is available in make enum.cc. The rest of this blog post explains how to define
FOR_EACH in a simple and general way. Though there’s an (arbitrary) limit to the size of the
argument list, the limit is exponential in the length of the source code. With an extra 5 lines
of code, you can have over 300 arguments, which seems like plenty and is way more acceptable
than old approaches requiring a separate macro for each possible number of arguments.

So in this blog post, I'll attempt to explain how C/C++ macros actually work and then show
how to combine that with C++20 __VA_0OPT__ to do some cool things.

C macro overview

C and C++ support two kinds of macros, object-like macros, which have no arguments, and
function-like macros, which require arguments. Here are some simple examples.

#define OL 123 // object-like macro
#define FL(x) ((x)+1) // function-like macro

The body of a macro—i.e., the part after the macro and optional arguments—is known as
the substitution list. Above, the substitution list is the single token 123 for OL, and the token
list ((x)+1) for FL.

Macro expansion occurs after the C/C++ preprocessor, cpp, has turned the program source
code into a series of lexical tokens. Identifiers such as FL, numbers, character literals, quoted
strings, parentheses, and operators such as + are all examples of tokens. Cpp effectively
transforms a list of input tokens to output tokens by copying many tokens as is, but expanding
macros in appropriate places.

Cpp was designed to guarantee termination of source code preprocessing. Personally, I think
termination is way overrated in programming languages. I mean, what comfort is the fact
that C is decidable when a trivial cpptorture.c program can require over 100 years and many


./make_enum.cc
./cpptorture.c

exabytes of memory to compile? But I digress. More practically, people like to write code
like this, from the linux <sys/epoll.h> header:

enum EPOLL EVENTS
{
EPOLLIN = 0x001,
#define EPOLLIN EPOLLIN
EPOLLPRI = 0x002,
#define EPOLLPRI EPOLLPRI
EPOLLOUT = 0x004,
#define EPOLLOUT EPOLLOUT
J* ... */
};

It’s nice to make EPOLL_EVENTS an enum, since doing so aids in debugging and is more elegant.
But it’s also nice for programs to be able to check for the availability of a particular flag with
#ifdef EPOLLPRI. So the <sys/epoll.h> header solves both problems, taking advantage of
the fact that cpp mostly doesn’t expand macros recursively. After these definitions, the token
EPOLLIN will expand to itself once and then stop expanding, so it’s effectively equivalent to
an enum that also supports #ifdef.

To prevent recursion, cpp associates a bit with every macro that has been defined. The
bit reflects whether the macro is currently being replaced with its substitution list, so let’s
call it the replacing bit. Cpp furthermore associates a bit with each token in the input
stream, signifying that the token can never be macro-expanded. Let’s call the latter bit the
unavailable bit. Initially, the replacing and unavailable bits are all clear.

As cpp processes each input token T, it sets T’s unavailable bit and decides whether or not to
macro-expand T as follows:

1. If T is the name of a macro for which the replacing bit is true, cpp sets the unavailable
bit on token T. Note that even if T is not in a context where it could be macro-
expanded—because it’s a function-like macro not followed by “(”"—cpp still sets the
unavailable bit. Moreover, once the unavailable has been set on an input token, it is
never be cleared.

2. If T is the name of an object-like macro and T’s unavailable bit is clear, then T is
expanded.

3. If T is the name of a function-like macro, T’s unavailable bit is clear, and T is followed
by (, then T is expanded. Note, however, that if T is called with an invalid number of
arguments, then the program is ill-formed.

If cpp decides not to macro-expand T, it simply adds T to the current output token list.
Otherwise, it expands T in two phases.

1. When T is a function-like macro, cpp scans all of the arguments supplied to T and
performs macro expansion on them. It scans arguments the same as normal token
processing, but instead of placing output tokens in the main preprocessor output, it



builds a replacement token list for each of T’s arguments. It also remembers the original,
non-macro-expanded arguments for use with # and ##.

2. Cpp takes T’s substitution list and, if T had arguments, replaces any occurrences of
parameter names with the corresponding argument token lists computed in step 1. It
also performs stringification and pasting as indicated by # and ## in the substitution
list. It then logically prepends the resulting tokens to the input list. Finally, cpp sets
the replacing bit to true on the macro named T.

With the replacing bit true, cpp continues processing input as usual from the tokens
it just added to the input list. This may result in more macro expansions, so is
sometimes called the rescan phase. Once cpp has consumed all tokens generated from
the substitution list, it clears the replacing bit on the macro named T.

Let’s look at a simple example:
FL(FL(5)) /7 => ((((5)+1))+1)

In phase 1, the argument of the outer macro, namely “FL(5),” gets expanded to the token list
((5)+1), yielding FL(((5)+1)). Expanding the outer FL macro substitutes this argument
for the parameter x in the substitution list, producing ((((5)+1))+1). The result should
be reasonably intuitive. The one thing to note is that because expansion of the inner FL
happened in phase 1, FL’s replacing bit was clear and no tokens ever needed their unavailable
bits set.

Now let’s look at a more interesting example:

#define ID(arg) arg
ID(ID) (ID)(X)  // => ID(ID)(X)

Consider the first part of the token sequence, namely ID(ID). We start in phase 1 by macro-
expanding the inner ID, but since it’s a function-like macro not followed by (, cpp decides
not to expand it. Hence, cpp replaces arg with ID in the outer ID’s substitution list, and
pushes the result onto the input list. Then it sets macro ID’s replacing bit and proceeds to
phase 2 (rescan). Upon processing the first token, ID, cpp will set its unavailable bit (since
ID has replacing true) and not expand it. Finally, cpp will clear ID’s replacing bit, but at
this point there is nothing left to expand because the third ID is not followed by (.

It turns out there’s actually a known ambiguity in the specification as to when exactly the
replacing bit gets cleared. What happens if a macro expansion ends with a function-like
macro, but the arguments to that macro include tokens from after the expansion? In practice,
compilers seem to do the intuitive thing and clear the replacing bit exactly before the first
token that entirely follows the macro expansion. For example:

#define LPAREN (
#define ID2(arg) arg

ID(ID2) (ID) (X) /) => X
ID(ID2 LPAREN)ID) (X) // => X


http://open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#268

ID(ID2 LPAREN ID)) (X) // => ID(X)
ID(ID2 (ID)) (X) // => ID(X)

In the above examples, various portions of the (ID) argument to ID2 are moved into the
argument of the first ID, and you can see that the second ID starts getting the unavailable
bit set as soon as it moves into the substitution list of the first ID.

Recursive macros

Of course, the C preprocessor trivially implements recursion via the #include directive. Files
can include themselves and appropriately #undef /#define constants to implement the base
case with #if conditionals. Include-file recursion isn’t all that practical, but it turns out you
can also expand macros recursively, or at least mutually recursively. The trick, which T first
saw proposed by Paul Fultz, is to avoid setting the unavailable bit on the macro that you
want to expand recursively by hiding the token until another macro’s rescan phase.

Let’s look at an example:

#define ID(arg) arg

#define PARENS () // Note space before (), so object-like macro
#define F_AGAIN() F

#define F() f F_AGAIN PARENS()

FO // => f F_AGAIN () ()
ID(F()) // => f f F_AGAIN () ()
ID(ID(FO)) // => f f f F_AGAIN () ()

When we expand F (), note that F_AGAIN is not followed by (, so it does not get expanded as
a macro. Sure, one step later, PARENS gets expanded to (), but at this point cpp has already
output the token F_AGAIN, so it’s too late to decide to expand it. Hence, the output of
F()—mnamely £ F_AGAIN () )—may contain an unexpanded macro call, but the unavailable
bits are clear on all tokens.

Now consider what happens when we call ID(F()). Well, fist we expand the argument F()
to £ F_AGAIN () (). Then we are done, so we clear F’s replacing bit. Next, ID substitutes
f F_AGAIN (O Q) for arg in its substitution list (namely the single token arg). So the
preprocessor sets ID’s replacing bit and rescans £ F_AGAIN () (), causing F_AGAIN and then
F to expand. But of course the same PARENS trick prevents the second F_AGAIN from getting
expanded.

Each time we pass F() through our identity macro ID, it gets expanded one more time. So we
can’t recurse indefinitely, but we can set an arbitrarily high maximum number of times. And
since we can easily generate a number of macro calls exponential in the number of lines of
code we write (remember our trivial cpptorture.c program?), the real limit is how much time
and memory we have for cpp, not the fact that cpp isn’t turing complete. Here are 5 lines
of code that re-scan macros 342 times (EXPAND4 gets called 256 times, but the intermediary
macros cause rescan as well):


https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
./cpptorture.c

#define EXPAND(arg) EXPAND1(EXPAND1(EXPAND1(EXPAND1(arg))))
#define EXPAND1(arg) EXPAND2(EXPAND2(EXPAND2(EXPAND2(arg))))
#define EXPAND2(arg) EXPAND3(EXPAND3(EXPAND3(EXPAND3(arg))))
#define EXPAND3(arg) EXPAND4 (EXPAND4 (EXPAND4 (EXPAND4 (arg))))
#define EXPANDZ(arg) arg

Variable-argument macros

C++11 added variable-argument macros. When the last macro parameter in a #define is

. rather than an identifier, it can accept an arbitrary number of arguments and the special
token __VA_ARGS__ in the substitution list expands to all of these arguments, separated by
commas. The canonical example is:

#define LOG(...) printf(__VA ARGS_ )

Unfortunately, there’s a slight annoyance that, in many situations, it’s hard to write a macro
that generates syntactically correct C code when . .. represents zero arguments. For example,
suppose you want a macro that prints messages in brackets. You might try to do something
like this:

#define LOG(fmt, ...) printf("[" fmt "]", _ VA ARGS_ )

LOG("level %d", 1vl); // => printf("[" "level zd" "]", lul);

Here we take advantage of the fact that C concatenates adjacent string constants. Since the
first argument to LOG, corresponding to parameter fmt, is expected to be a string constant,
we can construct a new format argument to printf in which this string has been bracketed.
Unfortunately, this doesn’t work if there are no arguments after the format string:

LOG ("hello"); // => printf("[" "hello” "1", );

The extra comma in printf("hello",) is a syntax error in C and C++4. C++20 solved
this problem by adding a new special identifier, __VA_OPT__. The sequence __VA OPT__(x),
which is only legal in the substitution list of a variable-argument macro, expands to x if
__VA_ARGS__ is non-empty and to nothing if it is empty. That allows us to fix the LOG macro
by suppressing the comma when the argument list is empty:

#define LOG(fmt, ...) printf("[" fmt "]" VA OPT_ (,) _ VA _ARGS )
LOG("hello"); // => printf("[" "hello" "]" );

But of course, as an unintended benefit, differentiating between empty and non-empty
argument lists is exactly the mechanism we need to implement the base case in recursion. ..

The FOR_EACH macro

We now have all the pieces we need to implement a FOR_EACH macro:



#define PARENS ()

#define EXPAND(...) EXPAND4 (EXPAND4 (EXPAND4 (EXPAND4( VA ARGS ))))

#define EXPAND4(...) EXPAND3(EXPAND3(EXPAND3(EXPAND3( VA ARGS ))))
#define EXPAND3(...) EXPAND2(EXPAND2(EXPAND2(EXPAND2( VA ARGS ))))
#define EXPAND2(...) EXPAND1(EXPAND1(EXPAND1(EXPAND1( VA ARGS ))))
#define EXPAND1(...) __VA_ARGS__
#define FOR_EACH(macro, ...) \
_ VA _OPT__(EXPAND(FOR_EACH HELPER(macro, _ VA ARGS )))
#define FOR_EACH HELPER(macro, al, ...) \
macro(al) \

__VA_OPT__(FOR_EACH_AGAIN PARENS (macro, _ VA ARGS_ ))
#define FOR EACH AGAIN() FOR_EACH_ HELPER

FOR_EACH(F, a, b, c, 1, 2, 3) // => F(a) F(b) F(c) F(1) F(2) F(3)

Note that we've tweaked EXPAND so that it handles macros that output commas by simply
using __VA_ARGS__ instead of a named arg.

The bulk of the work happens in FOR_EACH_HELPER(macro, al, ...), which applies macro
to argument al, and then uses __VA OPT__ to recurse if the remaining arguments are not
empty. Just as in the previous section, it uses the PARENS trick to enable recursion. The only
catch, of course, is that we have to keep re-scanning the macro, which is why the FOR_EACH
macro wraps FOR_EACH_HELPER in the EXPAND macro we saw before. For good measure,
FOR_EACH also uses __VA_OPT__ to handle the case of an empty argument list.

Will T use this in production code?” I'm thinking about it. In my first decade of C++
programming, I used to think that being a good C++ programmer was all about showing
how clever you are. Now as a wise old senior faculty member, I know that being a good C++
programmer is all about showing restraint. You need to know both how to be clever and when
to be clever. So let’s do the cost-benefit analysis, starting with the alternative approaches:

1. You could manually maintain separate enum declarations and pretty-printer /scanner
functions, with the risk that they could get out of sink.

2. You could generate the C++ code using another program, but this complicates the
build process and typically doesn’t make the code any more readable. C++ isn’t a
great language for generating text, and if you use perl or python or bash, the code
won’t necessarily be more transparent to other C++ programmers.

3. What I'm currently doing: my MAKE_ENUM equivalent macro stringifies VA ARGS__ and
passes it to a ~25-line function that parses it into a std: :vector<std::string>>. |
then have an EnumTab type containing std: :maps to get between enum values and strings.
The EnumTab constructor takes a vector of strings and a std::initializer_ list of
constants. So basically my macro ends up generating a function like this for every enum

type:



static inline const EnumTab &
getEnumTab (const Enum *)
{
static const EnumTab tab(EnumTab::parse_va_args(#__VA_ARGS__),
{__VA _ARGS__1});
return tab;

}

This is unreleased code, and the grossness around enum parsing (these enums need to
be read and written to human-readable files) is one of the reasons I don’t want to show
it publicly yet.

So I think the FOR_EACH approach is actually a net win over options 2 and 3. The most
restrained option, which you should always be considering in C++, is number 1.

How much are we paying in complexity for the use of FOR_EACH? It’s definitely tricky to
understand how FOR_EACH works if you don’t know how cpp works. It’s also, unfortunately,
hard to figure out how cpp works. I was unable to understand the C++ language specification
for macro replacement until I’d already understood how cpp works. https://en.cppreference.
com/ doesn’t get into nearly the level of detail necessary. On the other hand, I now have this
blog post I can reference in my source code, so writing this post is actually part of deciding
whether or not I want to use the trick. Of course, others should feel free to do the same... I
place all the cpp macros in this blog post in the public domain.

FOR_EACH is also far from the grossest use of macros I've seen. It doesn’t even use token
pasting (##) to synthesize new tokens that you can’t textually search for. Even though the
implementation is tricky to understand, it’s at least short. More importantly, the interface to
FOR_EACH is quite intuitive. For a multi-line C macro, I think MAKE_ENUM is fairly readable.
And once you employ FOR_EACH in one place, you can potentially amortize the complexity
over other uses of the macro.

Whatever you think of the trade-offs, this much is certain: the introduction of __VA _OPT__
makes FOR_EACH decidedly more palatable than the brittle and disgusting approaches with
older versions of C++, to the point that it’s at least worth seriously considering.
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