

GFS from Scratch
Ge Bian, Niket Agarwal, Wenli Looi

https://github.com/looi/CS244B
Dec 2017

Abstract

GFS from Scratch is our partial
re-implementation of GFS, the Google File
System. Like GFS, our system features a
single master that stores only metadata and
a group of chunkservers that store the
actual file data. The master is able to make
intelligent chunk placement decisions and
automatically re-replicate chunks when
chunkservers fail. We describe the design
and implementation of our system, explain
how it is used from a client’s perspective,
and report measurements from benchmarks
that compare our system to raw disk
performance.

1. Introduction

Google File System (GFS) is a large,
distributed file system designed to provide
fault tolerance while running on inexpensive
commodity hardware [1]. It was widely
deployed in Google and used extensively
until it was later replaced by the Colossus
file system [2]. Google, however, has not
released many details on Colossus and we
have thus decided to partially re-implement
GFS.

2. Design and Implementation

GFS from Scratch is based on GFS, so
here we focus on the key design points and
how our system differs from GFS. More
detailed rationale for the design can be
found in the GFS paper [1].

Our system is implemented in about
3,000 lines of C++ using the gRPC

framework and protocol buffers for
inter-process communication.

A cluster in GFS from Scratch consists
of a single master and multiple
chunkservers, as drawn in Figure 1. Files
are divided into 64MB fixed sized chunks
and each chunk is identified by an
immutable 64-bit chunkhandle assigned by
the master upon chunk creation.

2.1. Master

The single master maintains metadata
on all files in the system. Its involvement in
reads and writes is minimized because
clients contact chunkservers directly for
reads and writes (and cache this
information). Metadata is stored in an
SQLite database which provides atomicity
and durability. One table stores the list of
filenames, which are internally associated
with an int64 file ID. Another table stores the
chunks associated with each file.

2.2. Chunkserver

Chunkservers are responsible for
storing copies of chunks as assigned by the
master. They communicate directly with
clients during read and write operations,
preventing the master from becoming a
bottleneck. Chunks are stored as regular
files on the Linux filesystem. Each chunk is
64MB, although it is allocated lazily so that

https://github.com/looi/CS244B

smaller chunks do not need to use 64MB of
disk space. The master identifies chunks
through their “IP:port” combination.

2.3. Client library

GFS does not implement the
Unix/Linux file system interface and instead
provides a C++ client library. The client
library maintains and caches gRPC
connections to the master and
chunkservers, and provides various
functions:

● FindMatchingFiles: Lists files
matching a given prefix. Since GFS
filenames contain the entire folder
name as a prefix (such as
“a/b/c.txt”), this function can be used
to list directories.

● Read: Read a section of a file as a
byte array.

● Write: Write a section of a file as a
byte array. Creates the file if it does
not already exist.

● Append: Atomically appends data to
the end of the chunk. If the chunk

doesn’t enough space to fit the
appended data, the chunkserver
pads 0s and the client retries the
next chunkhandle.

● Move: Change a file’s name. This is
currently handled as a master-only
operation. Due to caching, clients
may be able to access files using
their old name for a short time.

● Delete: Delete a file. The file is
immediately deleted at the master,
unlike GFS where it is first renamed.
The master periodically identifies
chunks that are no longer referenced
and instructs chunkservers holding
them to delete the chunks.

2.4. Client application

We also implemented a client
application based on the client library. The
client application allows a users to
interactively access the filesystem and also
implements the benchmarks featured in this
paper.

2.5. Main RPCs

Here, we list the main RPCs
implemented. They are based on RPCs in
the original GFS paper:

2.5.1. Client → Master RPCs

● FindMatchingFiles: For a given
filename prefix, returns a list of
filenames matching the prefix.

● FindLocations: For a read
operation, returns the chunkservers
for a given filename and chunk
index. Chunkservers are identified
by “IP:port” combination.

● FindLeaseHolder: For a
write/append operation, returns the
chunkservers and identifies the
primary chunkserver for a given
filename and chunk index. Unlike
FindLocations, this RPC creates the
chunk if it does not exist. In the full
GFS, this operation will also
duplicate the chunk upon
copy-on-write of a snapshot (not
implemented here).

● GetFileLength: Returns the number
of chunks in a given file.

● MoveFile: Requests master to move
(rename) a file.

● DeleteFile: Requests master to
delete a file.

2.5.2. Client → Chunkserver RPCs

● ReadChunk: Reads a portion of a
given chunkhandle.

● PushData: Pushes data into
memory before writing or appending.

● WriteChunk: Writes a portion of a
given chunkhandle, using data
previously pushed into memory.

● Append: Appends data to end of a
chunk, using data previously pushed
into memory.

2.5.3. Chunkserver → Chunkserver

RPCs

● SerializedWrite: Used by the
primary chunkserver of a chunk to
replicate a write request onto
secondary chunkservers.

● CopyChunks: During re-replication
initiated by the master, used by a
chunkserver to send one or more
chunks to another chunkserver.

2.5.4. Chunkserver → Master RPCs

● Heartbeat: Renews the
chunkserver’s lease at the master
and informs the master of all chunks
on the chunkserver.

2.5.5. Master → Chunkserver RPCs

● ReplicateChunks: Used by the
master to inform a chunkserver to
re-replicate a chunk to another
chunkserver.

● DeleteChunks: Used by the master
to inform a chunkserver that it is
storing a chunk no longer referenced
by any file. It can thus be safely
deleted.

2.6. Write/Append process

We use a simplified write process that
lacks the cut-through routing used by the
original GFS paper. A client writes to a
chunk using the following procedure:

1. The client asks the master for the
locations (IP:port) and primary
replica for the chunk. If the chunk
does not exist, the master randomly
chooses 3 available chunkservers,
one of which is chosen as the
primary. This information is recorded
in the master’s SQLite database.

2. The client pushes the data directly to
all replicas.

3. Once all the replicas have
acknowledged receipt of the data,
the client sends a write request to
the primary. Currently, the primary
can only process one write at a time
which ensures that all writes are
processed in serialized order.

4. The primary forwards the write
request to all secondary replicas,
and also writes the data to its own
disk.

5. When the secondaries have written
the data to disk, they reply to the
primary.

6. The primary replies to the client. If
any errors occurred, the data may
have succeeded at an arbitrary
subset of replicas and the region is
left in an inconsistent state.

Append operations are similar, except
that the client must ask the master for the
number of chunks in order to append to the
last chunk. If the data to be appended
cannot fit in the last chunk, the primary pads
the chunk with zeroes and returns an error
RESOURCE_EXHAUSTED. The client is
then retries the append at the next chunk
index.

2.7. Heartbeats and Leases

Chunkservers maintain a lease at the
master and must send periodic Heartbeat
RPCs to the master to maintain the lease.
Heartbeats also inform the master of the
chunks that a chunkserver is storing. The
master does not keep this information on
disk, so when the master restarts, it waits
for Heartbeat messages from chunkservers
to know what chunks they are storing. When
a chunkserver’s lease expires, the master
automatically re-replicates chunks stored on
that server by asking a chunkserver with a

copy of the chunk to send it to a newly
assigned chunkserver.

The chunkserver currently sends a
heartbeat every 2 seconds and leases
expire after 10 seconds.

2.8. Benchmarks

We also implemented benchmarks in
the client application and a benchmark (BM)
server to assist in evaluating the system.
During the benchmark, the client sends the
current throughput to the BM server
approximately once per second. The BM
server then periodically prints out the
throughput of all clients as well as the global
aggregate throughput. This allowed us to
perform benchmarks more easily and
determine when the throughput had
reached steady state.

3. Evaluation

3.1 Single client read/write

performance

We benchmarked GFS with a single
client and 6 chunkservers on separate
machines. These machines had
conventional hard disks and were located in
the same rack with >10Gbps links between
them. First, we created a 1.6GB file,
consisting of 25 chunks. We then performed
a series of random and sequential reads
and writes to this file using request sizes of
4KB and 1MB. After waiting for the
throughput to reach steady-state, we
recorded the numbers here. To provide a
baseline for comparison, we also ran the
same benchmark on a regular 1.6GB file on
the client’s local hard disk, replacing calls to
our GFS client library with C++ file I/O. The
hard disk on the client was the same as in
the chunkservers.

Table 1: Single client benchmarks with 6
chunkservers on separate machines under
the same top-of-rack switch connected by
>10Gbps network links

Mode Op Req
size

GFS HDD
(MB/s)

Local HDD
(MB/s)

Seq Read 4K 45 85

Rand Read 4K 15 66

Seq Write 4K 2 84

Rand Write 4K 2 67

Seq Read 1M 312 395

Rand Read 1M 330 350

Seq Write 1M 114 380

Rand Write 1M 73 390

Overall, as shown in Table 1,

throughput is much higher with 1MB
requests compared with 4KB requests. This
is due to the larger relative overhead of
GFS in small requests compared to large
once. Writes are slower than reads because
reads are served from one replica while
data must be written to all replicas. Since
this is a single-client benchmark, the GFS
throughput is always lower than the local
hard disk. This illustrates the overall
overhead of our system.

3.2. Single client master operation

performance

We also benchmarked the performance
of master operations since the single master
is a bottleneck that restricts the overall
system performance. For this benchmark,
the client requested the master to create a
large number of chunks and we recorded

the rate at which they could be created. We
also benchmarked how fast the master
could lookup the location of chunks for a
read operation. The master’s SQLite
database was located on a hard disk and
SQLite’s write-ahead logging (WAL) mode
was enabled for higher performance.

Table 2: Master performance

Create chunk 5472 chunks/sec

Lookup chunk 16133 chunks/sec

As shown in table 2, the master is able

to support a relatively large number of
creation and lookup operations. The
numbers correspond to 5472×64MB = 350
GB/s of new chunks and 16133×64MB =
1033 GB/s of chunk accesses. The low rate
of chunk creations compared to lookups is
due to a SQLite transaction required for
each chunk creation.

3.3. Multiple client performance

To illustrate the scalability of our
system, we also benchmarked it with
multiple clients. We started 3 clients and
each client created a separate 1.6GB file on
GFS (with 6 chunkservers on separate
machines). Each client continuously
performed sequential 1 MB reads from
GFS. After reaching steady state, we then
proceeded to kill 3 chunkservers in
sequence and then bring them back up in
sequence. The aggregate throughput was
then recorded by the BM server and the
steady-state throughputs recorded is shown
in Figure 2.

As shown in the figure, multiple clients
allow our system to achieve higher
performance compared to the single client
case. This is because when clients access
chunks on different chunkservers, they are

able to take advantage of the combined
bandwidth of the servers. The throughput
with 3 clients, however, is not 3 times the
throughput with a single client. This is
because the clients’ files were on the same
6 chunkservers and would often read data
from the same chunkserver.

4. Future work

There were many improvements that
considered making but were unable to do so
due to time constraints, such as:

● Implementation of snapshots using
copy-on-write.

● Checksums and error correcting
codes. Deliberately corrupt data on a
chunkserver and observe that the
system detects and fixes it.

● Shadow read-only masters in case
the primary master fails.

● GUI tool to display the chunks and
metadata on each server and
visualize operations like
re-replication.

5. Conclusion

In this paper, we described GFS from
Scratch, our partial re-implementation of the
Google File System. We built a relatively
simple C++ based system that is able to
achieve reasonable performance. From this
project, we learned a great deal from the
project about how a large-scale distributed
and fault-tolerant system is implemented
and evaluated.

References

[1] Sanjay Ghemawat, Howard Gobioff,
and Shun-Tak Leung. “The Google file
system”. Proc. of SOSP. Dec. 2003, pp.
29–43.

[2] Fikes, Andrew. "Storage
architecture and challenges." Talk at the
Google Faculty Summit (2010).

