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Abstract 

GFS from Scratch is our partial 
re-implementation of GFS, the Google File 
System. Like GFS, our system features a 
single master that stores only metadata and 
a group of chunkservers that store the 
actual file data. The master is able to make 
intelligent chunk placement decisions and 
automatically re-replicate chunks when 
chunkservers fail. We describe the design 
and implementation of our system, explain 
how it is used from a client’s perspective, 
and report measurements from benchmarks 
that compare our system to raw disk 
performance. 

1. Introduction 

Google File System (GFS) is a large, 
distributed file system designed to provide 
fault tolerance while running on inexpensive 
commodity hardware [1]. It was widely 
deployed in Google and used extensively 
until it was later replaced by the Colossus 
file system [2]. Google, however, has not 
released many details on Colossus and we 
have thus decided to partially re-implement 
GFS. 

2. Design and Implementation 

GFS from Scratch is based on GFS, so 
here we focus on the key design points and 
how our system differs from GFS. More 
detailed rationale for the design can be 
found in the GFS paper [1]. 

Our system is implemented in about 
3,000 lines of C++ using the gRPC 

framework and protocol buffers for 
inter-process communication. 

A cluster in GFS from Scratch consists 
of a single master and multiple 
chunkservers, as drawn in Figure 1. Files 
are divided into 64MB fixed sized chunks 
and each chunk is identified by an 
immutable 64-bit chunkhandle assigned by 
the master upon chunk creation. 

2.1. Master 

The single master maintains metadata 
on all files in the system. Its involvement in 
reads and writes is minimized because 
clients contact chunkservers directly for 
reads and writes (and cache this 
information). Metadata is stored in an 
SQLite database which provides atomicity 
and durability. One table stores the list of 
filenames, which are internally associated 
with an int64 file ID. Another table stores the 
chunks associated with each file. 

2.2. Chunkserver 

Chunkservers are responsible for 
storing copies of chunks as assigned by the 
master. They communicate directly with 
clients during read and write operations, 
preventing the master from becoming a 
bottleneck. Chunks are stored as regular 
files on the Linux filesystem. Each chunk is 
64MB, although it is allocated lazily so that 
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smaller chunks do not need to use 64MB of 
disk space. The master identifies chunks 
through their “IP:port” combination. 

2.3. Client library 

GFS does not implement the 
Unix/Linux file system interface and instead 
provides a C++ client library. The client 
library maintains and caches gRPC 
connections to the master and 
chunkservers, and provides various 
functions: 

● FindMatchingFiles: Lists files 
matching a given prefix. Since GFS 
filenames contain the entire folder 
name as a prefix (such as 
“a/b/c.txt”), this function can be used 
to list directories. 

● Read: Read a section of a file as a 
byte array. 

● Write: Write a section of a file as a 
byte array. Creates the file if it does 
not already exist. 

● Append: Atomically appends data to 
the end of the chunk. If the chunk 

doesn’t enough space to fit the 
appended data, the chunkserver 
pads 0s and the client retries the 
next chunkhandle. 

● Move: Change a file’s name. This is 
currently handled as a master-only 
operation. Due to caching, clients 
may be able to access files using 
their old name for a short time. 

● Delete: Delete a file. The file is 
immediately deleted at the master, 
unlike GFS where it is first renamed. 
The master periodically identifies 
chunks that are no longer referenced 
and instructs chunkservers holding 
them to delete the chunks. 

2.4. Client application 

We also implemented a client 
application based on the client library. The 
client application allows a users to 
interactively access the filesystem and also 
implements the benchmarks featured in this 
paper. 



 

2.5. Main RPCs 

Here, we list the main RPCs 
implemented. They are based on RPCs in 
the original GFS paper: 

2.5.1. Client → Master RPCs 

● FindMatchingFiles: For a given 
filename prefix, returns a list of 
filenames matching the prefix. 

● FindLocations: For a read 
operation, returns the chunkservers 
for a given filename and chunk 
index. Chunkservers are identified 
by “IP:port” combination. 

● FindLeaseHolder: For a 
write/append operation, returns the 
chunkservers and identifies the 
primary chunkserver for a given 
filename and chunk index. Unlike 
FindLocations, this RPC creates the 
chunk if it does not exist. In the full 
GFS, this operation will also 
duplicate the chunk upon 
copy-on-write of a snapshot (not 
implemented here). 

● GetFileLength: Returns the number 
of chunks in a given file. 

● MoveFile: Requests master to move 
(rename) a file. 

● DeleteFile: Requests master to 
delete a file. 

2.5.2. Client → Chunkserver RPCs 

● ReadChunk: Reads a portion of a 
given chunkhandle. 

● PushData: Pushes data into 
memory before writing or appending. 

● WriteChunk: Writes a portion of a 
given chunkhandle, using data 
previously pushed into memory. 

● Append: Appends data to end of a 
chunk, using data previously pushed 
into memory. 

2.5.3. Chunkserver → Chunkserver 

RPCs 

● SerializedWrite: Used by the 
primary chunkserver of a chunk to 
replicate a write request onto 
secondary chunkservers. 

● CopyChunks: During re-replication 
initiated by the master, used by a 
chunkserver to send one or more 
chunks to another chunkserver. 

2.5.4. Chunkserver → Master RPCs 

● Heartbeat: Renews the 
chunkserver’s lease at the master 
and informs the master of all chunks 
on the chunkserver. 

2.5.5. Master → Chunkserver RPCs 

● ReplicateChunks: Used by the 
master to inform a chunkserver to 
re-replicate a chunk to another 
chunkserver. 

● DeleteChunks: Used by the master 
to inform a chunkserver that it is 
storing a chunk no longer referenced 
by any file. It can thus be safely 
deleted. 

2.6. Write/Append process 

We use a simplified write process that 
lacks the cut-through routing used by the 
original GFS paper. A client writes to a 
chunk using the following procedure: 

1. The client asks the master for the 
locations (IP:port) and primary 
replica for the chunk. If the chunk 
does not exist, the master randomly 
chooses 3 available chunkservers, 
one of which is chosen as the 
primary. This information is recorded 
in the master’s SQLite database. 

2. The client pushes the data directly to 
all replicas. 



 

3. Once all the replicas have 
acknowledged receipt of the data, 
the client sends a write request to 
the primary. Currently, the primary 
can only process one write at a time 
which ensures that all writes are 
processed in serialized order. 

4. The primary forwards the write 
request to all secondary replicas, 
and also writes the data to its own 
disk. 

5. When the secondaries have written 
the data to disk, they reply to the 
primary. 

6. The primary replies to the client. If 
any errors occurred, the data may 
have succeeded at an arbitrary 
subset of replicas and the region is 
left in an inconsistent state. 

Append operations are similar, except 
that the client must ask the master for the 
number of chunks in order to append to the 
last chunk. If the data to be appended 
cannot fit in the last chunk, the primary pads 
the chunk with zeroes and returns an error 
RESOURCE_EXHAUSTED. The client is 
then retries the append at the next chunk 
index. 

2.7. Heartbeats and Leases 

Chunkservers maintain a lease at the 
master and must send periodic Heartbeat 
RPCs to the master to maintain the lease. 
Heartbeats also inform the master of the 
chunks that a chunkserver is storing. The 
master does not keep this information on 
disk, so when the master restarts, it waits 
for Heartbeat messages from chunkservers 
to know what chunks they are storing. When 
a chunkserver’s lease expires, the master 
automatically re-replicates chunks stored on 
that server by asking a chunkserver with a 

copy of the chunk to send it to a newly 
assigned chunkserver. 

The chunkserver currently sends a 
heartbeat every 2 seconds and leases 
expire after 10 seconds. 

2.8. Benchmarks 

We also implemented benchmarks in 
the client application and a benchmark (BM) 
server to assist in evaluating the system. 
During the benchmark, the client sends the 
current throughput to the BM server 
approximately once per second. The BM 
server then periodically prints out the 
throughput of all clients as well as the global 
aggregate throughput. This allowed us to 
perform benchmarks more easily and 
determine when the throughput had 
reached steady state. 

3. Evaluation 

3.1 Single client read/write 

performance 

We benchmarked GFS with a single 
client and 6 chunkservers on separate 
machines. These machines had 
conventional hard disks and were located in 
the same rack with >10Gbps links between 
them. First, we created a 1.6GB file, 
consisting of 25 chunks. We then performed 
a series of random and sequential reads 
and writes to this file using request sizes of 
4KB and 1MB. After waiting for the 
throughput to reach steady-state, we 
recorded the numbers here. To provide a 
baseline for comparison, we also ran the 
same benchmark on a regular 1.6GB file on 
the client’s local hard disk, replacing calls to 
our GFS client library with C++ file I/O. The 
hard disk on the client was the same as in 
the chunkservers.  
  



 

Table 1: Single client benchmarks with 6 
chunkservers on separate machines under 
the same top-of-rack switch connected by 
>10Gbps network links 
 

Mode Op Req 
size 

GFS HDD 
(MB/s) 

Local HDD 
(MB/s) 

Seq  Read  4K  45   85 

Rand  Read  4K  15  66 

Seq  Write  4K  2  84 

Rand  Write  4K  2  67 

Seq  Read  1M  312  395 

Rand  Read  1M  330  350 

Seq  Write  1M  114  380 

Rand  Write  1M  73  390 

 
Overall, as shown in Table 1, 

throughput is much higher with 1MB 
requests compared with 4KB requests. This 
is due to the larger relative overhead of 
GFS in small requests compared to large 
once. Writes are slower than reads because 
reads are served from one replica while 
data must be written to all replicas. Since 
this is a single-client benchmark, the GFS 
throughput is always lower than the local 
hard disk. This illustrates the overall 
overhead of our system. 

3.2. Single client master operation 

performance 

We also benchmarked the performance 
of master operations since the single master 
is a bottleneck that restricts the overall 
system performance. For this benchmark, 
the client requested the master to create a 
large number of chunks and we recorded 

the rate at which they could be created. We 
also benchmarked how fast the master 
could lookup the location of chunks for a 
read operation. The master’s SQLite 
database was located on a hard disk and 
SQLite’s write-ahead logging (WAL) mode 
was enabled for higher performance. 

 
Table 2: Master performance 

Create chunk 5472 chunks/sec 

Lookup chunk 16133 chunks/sec 

 
As shown in table 2, the master is able 

to support a relatively large number of 
creation and lookup operations. The 
numbers correspond to 5472×64MB = 350 
GB/s of new chunks and 16133×64MB = 
1033 GB/s of chunk accesses. The low rate 
of chunk creations compared to lookups is 
due to a SQLite transaction required for 
each chunk creation. 

3.3. Multiple client performance 

To illustrate the scalability of our 
system, we also benchmarked it with 
multiple clients. We started 3 clients and 
each client created a separate 1.6GB file on 
GFS (with 6 chunkservers on separate 
machines). Each client continuously 
performed sequential 1 MB reads from 
GFS. After reaching steady state, we then 
proceeded to kill 3 chunkservers in 
sequence and then bring them back up in 
sequence. The aggregate throughput was 
then recorded by the BM server and the 
steady-state throughputs recorded is shown 
in Figure 2. 

As shown in the figure, multiple clients 
allow our system to achieve higher 
performance compared to the single client 
case. This is because when clients access 
chunks on different chunkservers, they are 



 

able to take advantage of the combined 
bandwidth of the servers. The throughput 
with 3 clients, however, is not 3 times the 
throughput with a single client. This is 
because the clients’ files were on the same 
6 chunkservers and would often read data 
from the same chunkserver. 

4. Future work 

There were many improvements that 
considered making but were unable to do so 
due to time constraints, such as: 

● Implementation of snapshots using 
copy-on-write. 

● Checksums and error correcting 
codes. Deliberately corrupt data on a 
chunkserver and observe that the 
system detects and fixes it. 

● Shadow read-only masters in case 
the primary master fails. 

● GUI tool to display the chunks and 
metadata on each server and 
visualize operations like 
re-replication. 

 

5. Conclusion 

In this paper, we described GFS from 
Scratch, our partial re-implementation of the 
Google File System. We built a relatively 
simple C++ based system that is able to 
achieve reasonable performance. From this 
project, we learned a great deal from the 
project about how a large-scale distributed 
and fault-tolerant system is implemented 
and evaluated. 
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