
Hierarchical Chubby: A Scalable, Distributed Locking Service

Zoë Bohn and Emma Dauterman

Abstract

We describe a scalable, hierarchical version of Google’s
locking service, Chubby, designed for use by systems that
require synchronization for a large number of clients ac-
cessing partitioned sections of data. Our service, termed
Hierarchical Chubby, adds the ability to monitor overall
system load, recruit additional machines as needed, and re-
distribute load when a machine becomes overwhelmed in a
way that utilizes the locality hints provided by the client.

1. Introduction

Google’s Chubby, a distributed, replicated locking ser-
vice, provided a much needed mechanism for coarse-
grained synchronization within Google developer sys-
tems, significantly reducing the amount of time and effort
wasted building and debugging ad-hoc consensus protocols.
Chubby was used by developers at Google to synchronize
primary election, partition work among servers, and per-
form other routine, coarse-grained synchronization work
within their systems.

One potential of Chubby not pursued in the original im-
plementation, however, was the ability maximize scaling for
large numbers of clients accessing partitioned sections of
data. The authors of Chubby, aware of this, propose several
methods for scaling Chubby, which we explore and expand
upon in this paper.

This paper describes a hierarchically scalable version of
Chubby designed to be used for large systems that require
synchronization across a large number of clients accessing
mostly partitioned data. Hierarchical Chubby (HC) adds
several important features to the original Chubby design, in-
spired by those suggested in the original paper: 1) a means
of monitoring overall system load, 2) a mechanism for re-
cruiting additional clusters on demand, and 3) an ability to
rebalance, or to redistribute locks to new clusters when a
cluster becomes overwhelmed, in a way that utilizes the lo-
cality hints provided by the client.

HC is composed of multiple clusters that perform differ-
ent functions. A cluster is a set of machines that contain
replicated state. In our implementation, each cluster con-
sists of 3 machines running the Raft consensus protocol.

In order to enable each of the added features, HC uses
a centralized master cluster to store metadata about over-
all system load. It uses this information to distribute work
among its worker clusters. The master cluster recruits these
worker clusters as demand on the system grows, and it re-
distributes the load among the worker clusters when nec-
essary. When performing this redistribution, HC uses the
locality hints it has received from the client to place locks
likely to be accessed together in the same cluster. If a client
uses locality hints well, this decreases the number of ses-
sions a client must maintain with different worker clusters
and thus maximizes the benefit of the redistribution.

Because of its ability to segregate locks based on client
locality hints, HC provides a service best-suited to a system
with large amounts of organized data that it expects to have
many clients accessing in a segregated way; for example,
a sharded database in which different sets of users perform
transactions involving different sets of servers would poten-
tially find our system useful.

Note that due to the proprietary nature of Chubby, we
were unable to access its existing code base. Thus, be-
fore embarking on an implementation of HC, we first had
to implement our own version of Chubby. Because of time
constraints, we chose to implement only the simple locking
service features of Chubby, as this was enough for a proof
of concept. However, our system could easily be expanded
to accommodate Chubby’s other features, such as storing
small amounts of metadata for a system.

The remainder of the paper is outlined in the following
manner. In Section 2, we describe the client API of HC. In
Section 3, we discuss the backend implementation of HC,
highlighting where it diverges from Chubby. In Section 4,
we discuss rebalancing, the mechanism that allows HC to
scale as the number of locks and clients increases. In Sec-
tion 5, we describe details specific to our implementation of
HC. In Section 6, we evaluate our HC system. In Section 7,
we describe potential future work. Finally, in Section 8, we
conclude with a summary of what we have accomplished.

2. Chubby-Inspired API

Our client API is inspired by the Chubby API. Just as in
Chubby, clients manage their locks in a hierarchical names-
pace. Locks are represented as pathnames, similar to the di-

1



rectory structure of a file system, where intermediate path-
names represent a domain (directory) in which the lock
(file) is stored. HC has a single root domain ’/’ which
can contain various locks (’/a’) and subdomains containing
other locks (’/a/b’). Domains not only allow the client to
logically organize locks, but also allow the client to provide
locality hints to HC. For example, HC expects ’/a/c1’ and
’/a/c2’ to be accessed together more frequently than ’/a/c1’
and ’/b/c2’. Because of this, domains help determine the
partitioning of locks in rebalancing.

Chubby allows clients to interact with it through a han-
dle abstraction that appears as a pointer to an opaque data
structure. We use a similar abstraction: an HC client calls
CreateLockClient() to generate an opaque handle, which we
refer to as a Lock Client, that can be used to perform lock-
ing operations. DestroyLockClient() can similarly be called
when the client finishes. Clients can use the Lock Client
handle to issue the following requests:

CreateLock(lock path)
CreateLockDomain(domain path)
TryAcquire(lock path) -> Sequencer*
ValidateLock(Sequencer*) -> bool
Release(lock path)
*The sequencer returned in TryAcquire and ValidateLock

is modelled after a technique used by Chubby to make op-
erations initiated under the protection of a client-held lock
robust to client failure (more detail in section 3.2.1).

3. Normal-Case Backend Operation
Where HC differs from Chubby most is in its backend

implementation. Unlike Chubby, which uses a single clus-
ter to service client requests, HC uses both a central mas-
ter cluster and additional as-needed worker clusters. The
master cluster stores metadata about the system and re-
cruits worker clusters as needed to manage different lock
domains. This design allows HC to scale as needed to ser-
vice a higher volume of client requests. Furthermore, de-
spite the greater spread of lock placement, under the as-
sumption that locks under the same domain are more likely
to be accessed together (and under our design, which at-
tempts to place locks in the same domain on the same clus-
ter), clients accessing disjoint sets of data should only need
to maintain sessions with a few worker clusters.

The LockClient abstraction allows us to hide the mas-
ter/worker cluster distinction from the client for ease of use,
despite the fact that different client requests are serviced by
different cluster types. The following sections describes the
responsibilities of the master and worker clusters, respec-
tively.

3.1. Master Cluster

In normal case operation, the master cluster has three
main responsibilities: 1) allocating locks to worker clus-

Figure 1. Architecture of Hierarchical Chubby: Master and worker
clusters are each made up of three machines running the Raft con-
sensus protocol.

ters in response to client CreateLock requests, 2) allocat-
ing domains to worker clusters in response to client Create-
Domain requests, and 3) locating the corresponding worker
cluster for a lock that a client wishes to acquire. To ser-
vice these requests, the master maintains a mapping of both
locks and lock domains to the worker clusters that manage
them.

3.1.1 Lock Creation and Allocation

Figure 2 shows the RPC sequence initiated when a client
attempts to create a lock. Upon receiving a CreateLock re-
quest, the master checks its list of existing locks (to pre-
vent duplicate lock creation). Once it determines that the
lock does not already exist, it checks the lock’s path to find
its domain. It then uses its domain mappings to determine
which worker cluster to allocate the lock to, placing it with
other locks in the same domain. Finally it alerts the worker,
waiting for confirmation before responding to the client.

3.1.2 Domain Creation and Allocation

The sequence for domain creation is even simpler than
that for lock creation because the master does not need to
alert the worker cluster to which it assigns the new domain.
Domains are used solely as locality hints for lock place-
ment, which the master is wholly responsible for.

3.1.3 Lock Location

When a client wishes to acquire a lock, it must first ask
the master cluster which worker cluster to send the request
to. Figure 3 shows the subsequent sequence of RPCs. As

2



Figure 2. Sequence of RPCs involved in creating a lock:
1) CreateLock Request
2) ClaimLocks Command
3) ClaimLocks Response
4) CreateLock Response

an optimization, once the client receives the locational in-
formation from the master, it adds it to a local cache that it
can service subsequent requests from.

3.2. Worker Clusters

Worker clusters are responsible solely for the locks given
to them by the master cluster. They maintain state for each
of these locks to ensure that only unheld locks may be ac-
quired and that only the client that acquired a lock may re-
lease it.

3.2.1 Sequencers

For each lock, the worker keeps a corresponding se-
quence number (introduced in Section 2). Like Chubby,
in order to allow clients to deal with failures while hold-
ing locks, HC maintains a sequence number for each lock,
which it increments upon each successful acquire of that
lock. It returns the current sequence number in its response
to the client TryAcquire request. The client can then include
this number with requests to other remote servers. These
servers can validate the sequence number before processing
the client request. If the sequence number has changed, then
the server knows the client failed between the issuing of the
remote request and its processing for long enough that its
client session with HC timed out. Because workers release
locks held by timed-out clients, another client was then able
to acquire the lock (and increment the sequence number).

Note that if a client fails to acquire a lock, HC will return
a sentinel value as the sequencer to show that the lock was
not acquired.

Figure 3. Sequence of RPCs involved in acquiring a lock:
1) LocateLock Request
2) LocateLock Response
3) AcquireLock Request
4) AcquireLock Response

4. Recruitment and Rebalancing

In order to scale as the number of locks maintained
by HC grows, HC occasionally needs to recruit additional
workers. The master can move locks from an overwhelmed
worker cluster to a newly recruited one in a process we call
rebalancing (outlined in Figure 4).

The need for recruitment is determined by the number
of locks a worker cluster is currently maintaining, a number
that grows as more locks are created under the domain(s) it
manages. The master tracks the number of locks maintained
by each worker cluster, and when that number exceeds a
threshold, the master recruits another cluster and begins the
rebalancing process in order to share load between the over-
loaded cluster and the newly recruited one.

First, the master determines which of the locks should
be moved, using their pathnames to maximize locality when
partitioning them between clusters. Next, the master issues
a RebalancingCommand to the overwhelmed worker speci-
fying the locks that should be moved.

Note that locks currently held by clients cannot be
moved. This is because workers maintain sessions with
each client holding locks so that they can release these locks
when clients fail. These sessions cannot be transferred be-
tween workers. Thus currently held locks are not safe to
move: we refer to these locks as recalcitrant locks. By ex-
tension, all other locks are safe to move.

Therefore, upon receiving the RebalancingCommand,
the worker disables locks that are safe to move to prevent
clients from acquiring them during rebalancing. The worker
marks the remaining recalcitrant locks to be moved upon
their release.

3



Figure 4. Sequence of rebalancing RPCs:
1) Rebalance Command
2) Rebalance Response
3) ClaimLocks Command
4) ClaimLocks Response
5) DisownLocks Command
6) DisownLocks Response

Finally, the worker responds to the master with the locks
that are safe to move. The master subsequently transfers
these locks to a new worker cluster. Once the new worker
cluster acknowledges ownership of these locks, the master
updates its internal mappings to reflect the new lock loca-
tions and sends an RPC to the original worker cluster, letting
it know that it is safe to delete these locks.

4.1. Recalcitrant Locks

Recalcitrant locks remain at the old worker cluster af-
ter rebalancing is complete, but should be moved to the
new worker as soon as possible. When a recalcitrant lock
is released, the worker cluster immediately responds to the
client, disables the lock, and alerts the master that the lock
can now be moved. As before, the master then transfers the
lock to the appropriate cluster, updates its internal state, and
alerts the worker that it can delete its copy. The full process
is outlined in Figure 5.

4.2. Locality Hints

Locality hints are central to the process of rebalancing
because they help HC make informed decisions about where
to place locks. The client gives HC domain hints by creating
domains and placing related locks in the same domain. By
trying to keep locks with the same domain on the same clus-
ter, HC minimizes the number of worker clusters a client
needs to communicate with (assuming a client groups all
the locks it plans to use in a domain). This is important be-
cause clients maintain sessions with workers, which incurs
overhead (see Section 5.2). In the future, this could also
allow for more batching and caching.

Figure 5. Sequence of RPCs involved in rebalancing a recalcitrant
lock:
1) ReleaseLock Request
2) ReleaseLock Response
3) ReleaseRecalcitrant Alert
4) ClaimLocks Command
5) ClaimLocks Response
6) DisownLocks Command
7) DisownLocks Response

5. Implementation
Because the proprietary nature of Chubby precluded ex-

tension, we first implemented our own simplified version
of Chubby using details in the paper. Our implementation
is available at https://github.com/zoebohn/Hierarchical-
Chubby and is approximately 2,700 lines of code (excluding
the Raft library).

5.1. Consensus

To replicate state across machines in the master and
worker clusters, we used the Raft consensus protocol. Mas-
ter and worker operations are executed in master and worker
finite state machines (FSMs) replicated with Raft. We used
the hashicorp Golang implementation of Raft[1], which re-
quired us to implement a basic client library to allow the
LockClient to communicate with HC clusters.

5.2. Client Library

Our client library supports communication with clusters
via a single RPC or a client session. In a session, the client
maintains a connection with the active leader by sending
periodic KeepAlive messages. In a single RPC, the client
library opens a connection, sends the RPC to the machine it
thinks is the Raft leader, and closes the connection, repeat-
ing this until it knows that the RPC has reached the active
leader. It is important to find the leader because the Clien-
tRequest can only be handled correctly and replicated across
all FSMs at the leader.

Both methods of communication use ClientRequest and

4



ClientResponse RPCs. A ClientRequest contains log entries
to apply to the replicated FSMs, as well as state for main-
taining a session, if necessary. To ensure correctness, all
log entries applied to the FSMs are idempotent. A Clien-
tResponse contains the success of the operation as well an
address hint for the current leader. This leader address hint
is useful because if the client contacts a Raft server that is
not the leader (either when first contacting the cluster or in
a session when another server is elected), the client can be
redirected to the leader.

If the active leader fails to receive a KeepAlive message
from a client that it has an open session with over a certain
interval, it ends the session. The cluster must then update
its state accordingly; for a worker cluster, this involves re-
leasing all locks held by the client. To support this, we al-
low a ClientRequest to contain a command that is applied to
cluster FSMs when a session ends. Note that clients do not
maintain sessions with the master cluster, but simply send
single RPCs because the master cluster does not need to be
informed if the client fails. This helps to avoid a potential
master bottleneck because clients do not need to continu-
ously send KeepAlive messages to the master.

5.3. Callbacks

Our implementation of HC requires master and worker
clusters to communicate directly. HC cannot do this com-
munication within its replicated logs for several reasons:

1) Possible deadlock: Because communication needs
to be done synchronously before responding to the client,
communication must be blocking. This can lead to deadlock
if two clusters simultaneously send messages from within
their FSMs and each block waiting for the other’s response.

2) Performance optimization: If each cluster has 3 ma-
chines (as in our implementation) and cluster A sends a
message to cluster B and B responds, not using callbacks
would require 3 + (3*3) = 12 messages, instead of just 2.
Because our RPCs are idempotent, this would not cause the
log entries to be incorrect, but would lead to a log entry
being applied times instead of just once.

For these reasons, we added support for callbacks. Af-
ter applying a log entry to the replicated FSMs, the FSMs
may return a callback. This callback is run at the active
leader, and while state from the FSM is used to generate
the callback, the callback itself does not change FSM state.
However, this callback may return a command that can then
be replicated to all Raft servers, updating all FSMs in the
cluster based on the execution of the callback. Because the
leader executes the callback synchronously before replying
to the client, if the client hears that its operation has been
applied, the callback is guaranteed to have been executed
in its entirety. Because all callbacks are idempotent, this
ensures correctness.

Table 1. Results of tests varying recruitment and locality hints.

6. Evaluation
6.1. Correctness

Before evaluating the performance of our system, we
first evaluated correctness through 14 end-to-end tests that
verified that HC’s behavior matched the Chubby-inspired
API described in Section 2.

6.2. Performance

Our evaluation varied recruitment and locality hints to
examine their effect on throughput. We deployed HC on
the Stanford myth cluster with each machine using 2 Intel
Core2 Duo CPUs and running Ubuntu 14.04. We chose to
focus on throughput because our locking system is meant
to be used by a large number of clients. By recruiting ad-
ditional clusters, we hoped to be able to use these addi-
tional resources (particularly network bandwidth) to per-
form more client operations, allowing our locking system
to scale. We focused on the throughput of acquiring and re-
leasing locks because we expect these to be the operations
clients continually use. The cost of creating a lock, which
might include rebalancing, is only incurred once, and so,
over thousands of locking operations, is amortized away.
We expect that clients will use a fairly small working set of
locks and repeatedly acquire and release these locks, and so
we structured our tests to evaluate this type of workload.

6.2.1 Test Setup

We ran 4 tests varying recruitment and locality hints (see
Table 1). In each test, 3 clients simultaneously acquired
and released locks repeatedly for approximately 50 seconds.
Each client had a set of 100 locks, and the lock sets were
disjoint to prevent contention. The locks and domains were
created before the test was started to exclude the cost of
creation and rebalancing and focus on the most common
operations.

To test the effectiveness of recruitment, we ran tests with
recruitment (Tests 1 and 3) and without recruitment (Tests 2
and 4). With recruitment, we recruited 2 additional worker

5



clusters to spread the load evenly across 3 worker clusters.
Without recruitment, the load was concentrated at a single
worker cluster.

To test the effectiveness of locality hints, we ran tests
with locality hints (Tests 1 and 2) and without locality hints
(Tests 3 and 4). With locality hints, we gave each client
its own domain and configured the rebalancing threshold
(when the master cluster triggered rebalancing) so that each
worker cluster contained all the locks held in a single do-
main. Without locality hints, the locks were all in the root
domain. However, in Test 3, each client’s lock set was
spread between all three worker clusters.

Because we had a limited number of machines, we ran
each cluster (representing 3 machines) on a single machine
and gave each client its own machine. Thus in Tests 1 and
3, we used 7 machines (1 master cluster, 3 worker clusters,
3 clients), and in Tests 2 and 4, we used 5 machines (1 mas-
ter cluster, 1 worker cluster, 3 clients). While the service
would not be deployed this way in practice, using a machine
for each cluster still allowed us to test scalability. Because
of variable delay caused by other workloads running on the
myth machines, Raft consensus operations (e.g. snapshot-
ting), and the network, we ran each test 5 times and took the
average: these are the numbers shown in Table 1.

6.2.2 Analysis

From the results in Table 1, we can see that recruitment
with locality hints allows HC to scale by almost a factor
of 2. Recruitment with or without locality hints (Tests 1
and 3) allows some scaling because the system has more re-
sources, most notably bandwidth, to process client requests.
The master is not a bottleneck because once the client lo-
cates a lock, the client can cache the result and talk directly
to the worker from then on, and the worker does not need to
talk to the master for simple acquire and release operations.

Recruitment with locality hints (Test 1) further improves
performance by reducing the overhead of sessions: the
client only needs to send periodic KeepAlive messages to
a single worker cluster as opposed to many worker clus-
ters. We saw the overhead of sessions in the logs of worker
clusters after tests without rebalancing: it was not uncom-
mon to see that a client session ended and had to be reestab-
lished. From this, we concluded that the worker cluster was
too overwhelmed to process KeepAlive messages quickly
enough, incurring the additional overhead of cleaning up
and then reestablishing a connection both at the worker
and client. Recruiting additional clusters while limiting the
number of clusters the client needs to communicate with
helps to solve this problem.

We were unsurprised to see no difference between using
locality hints and not using locality hints when recruiting
was disabled (Tests 2 and 4) because if no clusters are re-

cruited, all locks are stored in a single worker cluster, re-
gardless of the lock’s name.

From these tests, we conclude that recruitment substan-
tially improves throughput, and that locality hints allow HC
to take advantage of recruiting most effectively.

7. Future Work
We plan to experiment with more sophisticated lock par-

titioning during rebalancing. Rather than always splitting
locks into two equal-size groups, HC may sometimes ben-
efit from keeping all the locks in a domain at one cluster,
even if this gives one cluster more locks than another. This
change could help further reduce session overhead.

HC could also benefit from taking into account the fre-
quency at which a lock is being accessed in order to more
accurately balance load between workers. This would re-
quire additional communication between the master and
worker during rebalancing because although the master
makes partitioning decisions, only the worker knows which
locks are accessed most frequently.

HC could also avoid using unnecessary resources by
joining clusters with low load. This feature would require
first implementing a function to delete a lock in the Client
API.

8. Conclusion
Hierarchical Chubby is a scalable, hierarchical locking

service designed for use by systems that require synchro-
nization for a large number of clients accessing disjoint sets
of data. In addition to an implementation of a simplified
version of the original Chubby, it also contains features that
allow it to scale as the number of clients grows and to re-
balance load among worker clusters in a way that preserves
the benefit of the locality hints provided by clients. We plan
to expand upon these benefits in our future work.

References

[1] Hashicorp golang implementation of raft
https://github.com/hashicorp/raft.
[2] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th ACM/USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), 2006.
[3] Ongaro, D. and Ousterhout, J. K.. In search of an under-
standable consensus algorithm. In USENIX Annual Technical
Conference, 2014.
[4] Ongaro, Diego. Consensus: Bridging Theory and Practice.
Stanford University. 2014.
[5] Raft consensus algorithm website.
http://raftconsensus.github.io.

6


