
A Byzantine Fault Tolerant Raft

John Clow
Stanford University

jclow@stanford.edu

Zhilin Jiang
Stanford University

zjiang23@stanford.edu

Abstract

Just like how Paxos is hard to understand, PBFT is
also hard to understand. Therefore, we want to formu-
late a Byzantine Fault Tolerant distributed file system
that is easy to understand. Therefore, we took inspira-
tion from Raft, PBFT, as well as Blockchains (because
it’s the latest fad) to create a simple BFT algorithm.

1. Introduction

In the world of high stakes distributed computing
environments, fail stop semantics is a bad assumption
to rely on. Even though oftentimes servers in the dis-
tributed system are not expected to exhibit malicious
behavior, it is possible that faults cause them to have
arbitrary behavior, and therefore a distributed system
that assumes fail-stop semantics is vulnerable to bugs,
hardware faults, and other problems that can be exhib-
ited by either the servers or the network. Therefore,
in order to give higher guarantees on correctness even
in the case of these failures, a Byzantine Fault Tolerant
(BFT) distributed computing environment is desirable.

Additionally, the more complicated an algorithm is,
the more places where subtle bugs could occur. There-
fore, in order to have the highest guarantees on correct-
ness, one should strive to find the simplest algorithm
that achieves all of the targets, even if that algorithm
requires some trade offs. The current PBFT algorithm
[1] has some pain points, such as the method for catch-
ing up the state when there is a view change, and the
log index reservation process. Therefore, we want to
introduce a system with slightly less performance opti-
mizations, that will in turn be easier to understand and
easier to implement correctly.

2. BFT Raft Algorithm

In order to make the Raft consensus protocol [4]
implementation Byzantine fault tolerant, there must be
many significant changes to the algorithm.

2.1. Signatures for Verification

Without any protections, Byzantine fault tolerant
nodes can easily masquerade as other nodes. There-
fore, in order to prevent spoofing and replays, all com-
munication from a node must be signed.

In our implementation, we will be using digital sig-
natures for node verification. As the cryptographic
landscape continues to change, new algorithms for
client signing will emerge. We expect that our use of
these signatures will be compatible with these future
cryptographic primitives.

Current asymmetric cryptographic algorithms re-
quire that each server has its private key as well as the
real public keys for all servers in order to securely cre-
ate and validate messages. In order to transfer these
signatures to all clients, we need either an out-of-band
trusted transfer method to transfer the public keys, or a
trusted server through which the keys can be commu-
nicated, just like PBFT.

Note that we assume that the client is correct. There
is no way for a distributed system to distinguish be-
tween a legitimate client request and a malicious one,
because every action can have either a proper intent or
a malicious intent. For example, there can be legiti-
mate and illegitimate cases for deleting a file, and we
can’t tell them apart beforehand.

2.2. Cryptographic Digests

In the Byzantine Fault Tolerance version of Raft,
cryptographic hashes (digests) are used to generate a
fingerprint for the actual data chunks. The use of hash-

1

ing allows nodes to verify their agreement on a certain
value. In Raft-BFT, nodes transmit a hash value in-
stead of the actual data chunk until the transaction is
to be committed, thus drastically saving message over-
head for aborted transactions. Hashing is also used to
verify the consistency of the local states at two dif-
ferent nodes, thus ensuring that transactions are pro-
cessed in the same order across them. Examples of
hash functions that can be used for cryptographic di-
gests include the SHA-2 family (e.g. SHA-256, SHA-
512) and Keccak.

2.3. Leader Change

The RAFT leader election process is inherently not
byzantine fault tolerant. A faulty node could ignore the
timeout and trigger the leader election immediately,
and through the coordination of two faulty nodes, they
could switch leaders between the two nodes back and
forth, preventing any work from being committed.
Thereby our new leader selection algorithm is essen-
tially the one from PBFT. There is a rigged leader elec-
tion, that happens after a fixed timeout time per node,
and each node votes in a way that increases the possi-
bility of consensus forming.

Some differences between the PBFT algorithms are
some details on the timeouts, and the first commit af-
ter the leader is selected. Timeouts in this RAFT-
BFT happen when the leader has not made any for-
ward progress (Appends or Commits) in a predeter-
mined amount of time. Arguably this method is not
ideal, a faulty leader can always slow down the algo-
rithm by committing the least amount possible, how-
ever, the PBFT algorithm has its own faults, namely,
under high load, the leader would timeout, causing
frequent view changes which would prevent forward
progress. Therefore, an ideal solution might be the
combination of the two, which will be explored at a
later time.

Unlike PBFT where there is a complicated algo-
rithm to determine the entries that need to be rerun,
in our RAFT-BFT, there are at most one entries that
need to be rerun. Because of the constraints on our
algorithm, we know that only one entries could be ap-
pended but not committed. Therefore we can just reap-
ply the entry as normal after the leader change commit
is approved.

2.4. Log Replication

Once a leader is selected, it and other clients can be-
gin servicing client requests. For each request, a client
sends a message to what it thinks is the leader with a
command to be executed by the replicated machines,
as it does in Raft, but it includes an additional client
signature to ensure validity of the message. This pre-
vents another node (including the leader) from spoof-
ing the request.

After the leader receives the message, there are
three phases, Pre-Append, Append, and Rollup
Phases, as seen in Figure 1. The Pre-Append and Ap-
pend phase is used to totally order the server commits
and through that the client transactions, then the Ap-
pend and Rollup phase are used to ensure clients and
servers that the transactions have been properly ap-
pended to the logs.

If the client does not hear back about the request
after a certain amount of time, it then broadcasts the
message to all nodes. Any node that is not the leader
and receives a message from a client forwards the mes-
sage to what it believes is the current leader.

2.4.1 Client Leader Interaction

Before the Pre-Append phase, clients send to the
leader transactions. Each transaction contains the
transaction body, the timestamp of the transaction, a
client identifier (an integer), as well as a signature from
the client validating the message. The timestamp for
the client is a monotonically increasing counter for the
client.

The former allows for replay protection, as each
new transaction needs to have a different counter
value. The signature is used to validate that the client
sent the message preventing any adversaries, including
the leader from spoofing the client transaction.

When the leader receives the client message, it will
add it to a queue of pending messages, and add it to
stable storage. Periodically, the leader will group a set
of the messages in the queue, validate all of them, and
create a new Raft Transaction set.

The validation consists of:

• Check that the client signature is valid and
matches the client number

2

Source Dest. Message
Client Leader < NEW, T ransactions, t, c >
Leader Backups < PRE-APPEND, l, n, d >
Leader Backups (DATA, [< Tx, t, c >σc])
Backupi Leader (PRE-APPEND-ACK, i, sigpre−app)
Leader Backups < APPEND-ENTRIES, P (commit), dc, P (a) >
Backupi Leader (APPEND-ACK, i, sigapp)
Replicai Client < COMMITTED, r, i, d >

Table 1. A brief summary of the messages in the normal case commit. The triangle brackets (< ... >) signify that the entire
message is signed.

Figure 1. Normal case operation for Raft-BFT

• Check that the client timestamp is greater than all
previous client timestamps

• Check that there are no conflicts between transac-
tions

• Validate that the transaction is valid and well-
formed

The leader then sends out both a Pre-Append packet
(as detailed below), as well as the data packet. The
data packet doesn’t need to be signed, and on top of
that does not need to be received by clients until the
Append phase, allowing the leader to send the data
with a lower priority.

2.5. Pre-Append Phase

After validation, the leader then combines all of the
transactions into a single PRE-APPEND packet that
includes the current leader term, the log entry number
for this new entry, a hash of the list of of transactions in
the entry, as well the leader’s signature of the former

entries proving that it created the entry. The leader
signature ensures that no faulty node can create a fake
but valid looking Pre-Append message that could stall
the commit pipeline

When a backup receives the PRE-APPEND entry, it
validates that the leader term and entry number combi-
nation is higher than any entry it has approved before.
There is no need to validate that the entry number is
only a bit higher than the previous entry, as that is done
in the Append phase. . If the checks pass, the client
adds the PRE-APPEND to its log. It then responds to
the leader with the term and log numbers, the client
number, as well as a signature signing the other ele-
ments in the packet along with the list of transaction
hashes.

2.6. Append Entry

In order to make the protocol simple, there can be
at most one entry in each of the Append Entry and

3

Rollup Phases. This does not hinder performance be-
cause multiple transactions are included in each entry
that is being committed. This does reduce the amount
of data transmitted as well. The Pre-Append stage has
already ensured the data order which in turn means that
there is no need for any entry numbers or other identi-
fying data, which in turn saves a lot of data.

The leader creates one packet for each AppendEn-
tries, which can include both information for the Ap-
pend phase and for the commit phase. For the Ap-
pend phase, the leader signs the Pre-Append data in
the same way the backups do and after collecting a to-
tal of 2f + 1 Pre-Append signatures, sends them as
proof that the Pre-Append has succeeded. When there
are no ready append messages, the leader can send the
empty array for the signature field signifying so.

When the follower has received the Pre-Append sig-
natures as well as all of the transaction packets for the
next entries to append, and processed any commits in
the last AppendEntries message, the follower first does
the validation of the transactions in the same way that
the leader does during the Pre-Append phase. Unless
either the leader or the follower is faulty, this is guar-
anteed to succeed. Then, it validates that the hashes
of the transactions in the Pre-Append is valid and that
the follower signatures the leader attached as proof for
the Pre-Append phase is also valid. It additionally val-
idates that the entry index for the append is one higher
than the one for the latest committed entry. After val-
idating the entry, the follower then executes the com-
mand and then appends the entry into the log. Finally,
after it has sent the response to the client for the previ-
ous entry (the one already committed) , it sends to the
leader its node number a signature, signing the con-
catenation hash of the current Append entry along with
the last entry back to the leader node.

2.6.1 Commit

In order to fully commit the entry, there’s one more
step. The leader again has to collect 2f + 1 valid
signatures, but these are append signatures. After do-
ing so, it first stores it in a stable log, then replies to
the client with the result, a hash of the client request,
it’s node number, as well as a signature signing the
message. Finally it sends the signatures as part of the
AppendEntries message to the backups. The backups

upon receiving the message, also validate it, add it to
their stable log, and send a reply back to the client.
When the client has received f+1 identical messages,
it knows that the commit is successful.

3. Multiple Node Total Ordering Validation

The PBFT paper prevents a node from reordering
the transactions of a client, but it doesn’t protects
against the leader reordering the requests from mul-
tiple clients relative to each other in order to cause un-
intended effects. For example, client A can request to
move a file to a folder and client B requests to delete
the entire folder, each after reading the contents of the
folder. In PBFT, the primary could order these in arbi-
trary order, and thereby can arbitrarily decide whether
the moved file is deleted.

We propose a simple extension to detect and prevent
arbitrary results, that the client adds the leader era and
the log entry number for the earliest transaction which
the current transaction is dependent on (eg. the read
of the directory), and both the leader and the backups
validate that there are no conflicting actions between
the earliest transaction and the current transaction. If
a non-leader node detects the conflict, responds to the
client and stops processing the request. If the leader
node detects the conflict, it responds to the client, but
continues to process the request, but using a special log
entry value to mark it as a conflict and not prevent sub-
sequent valid requests from going through. The client
only accepts the conflict message when f + 1 nodes
respond that there is a conflict. This ensures that at
least one honest node validates the conflict, and pre-
vents failed nodes from tricking the client into sending
duplicate valid transactions and violating the at most
once semantics.

4. Snapshots

In PBFT, the only ways to recover from a failure is
to rely on the view change algorithm or wait for a snap-
shot and keep a log of all commits after the snapshot
while the snapshot is being transferred. This is partic-
ularly problematic in intermittent networks, where one
node could lose enough successive packets from other
nodes that it would be unable to accept a commit, mak-
ing it fall behind. In theory, if PBFT is implemented
with signatures instead, a node could catch up without
waiting for a view change or snapshot. However, even

4

in that case, the node needs to get the entire log since
the last snapshot from at least 2f other nodes in order
to guarantee validity. This is because f nodes may be
faulty and can send the history with holes in it, and a
further f − 1 other nodes might be out of date.

In our RAFT-BFT implementation, there are two
easy ways to catch up: Retrieving past entries through
tree-based logs, or using a Merkel tree to keep up
to date snapshots. In the former method, like PBFT,
snapshots are taken every n non leader change entries,
n being a predetermined number (like 1000). Each of
these entries are special entries, where the leader and
the followers confirm that they have the same hash.
Any entries before the snapshot can then be discarded.

The method for nodes to catch up is significantly
simpler than PBFT though. Whenever a node hears
of a committed entry hash from the leader’s ApendEn-
tries message that it doesn’t recognize, it sends mes-
sages to its non-leader peers, asking for the associ-
ated with the hash. The peer responds with the entry,
which includes all the data associated with the entry,
the 2f +1 signatures proving the entry is real, and the
hash for the previous entry. If the entry is a snapshot,
the peer additionally responds with the entire contents
of the snapshot. Through this, the node can verify the
chain of commits, and can rebuild the history without
relying on a new timestamp or view change and with-
out talking to the leader. It doesn’t usually need to
talk to 2f nodes either, it only needs receive a single
response with the previous commit.

4.1. Merkel Tree Snapshots

The other method of keeping snapshots is through
using a Merkel tree to keep a constant hash of the state.
This allows for basically a log free BFT implementa-
tion. In this formulation, the commit hash is replaced
with the Merkel tree, which as before is afterwards se-
cured through signatures. A node that receives a com-
mit therefore knows the latest Merkel tree root, and
can contact peers for the rest of the tree. In this case,
the only state that the peers who are up to date have
to store is the Merkel tree of the latest committed en-
try state, as well as all information associated with all
non-committed entries and just the latest committed
entry.

5. Implementation

We made two implementations, a inoperative one in
Rust, and one in Python of just the typical case opera-
tion.

5.1. Rust

Our implementation is based on Raft-rs [2], an im-
plementation of Raft using the Rust programming lan-
guage. Raft-rs uses Cap’n Proto for its RPCs, and Mio
(Metal I/O) for its asynchronous event loops. Raft-
rs has existing unit tests and benchmarks available,
which we had plan to leverage to ensure that the Raft
API behaviors stay consistent after our modification.
We began our implementation with the forked version
by GitHub user paenko [5], which added several fixes
on top of the original Hoverbear code base.

The Raft-rs code base, although marked to be only
of alpha quality, provides a complete implementa-
tion of the Raft consensus protocol, including normal-
case transaction handling, leader change, Cap n’ Proto
structures defining messages, an underlying state ma-
chine with persistent logs, and various tests and bench-
marks. The interfaces are closely integrated, which
meant that adding and removing fields in the existing
message structure required modifying many function
calls and implementation details. Most of the tests
and benchmarks also used the Raft protocol’s node
states and interfaces, and therefore needed to be modi-
fied to work with Raft-BFT. Additionally, some Rust
packages (e.g. capnp-nonblock and ed25519-dalek)
that Raft-rs depended on along with Rust itself had
significant modifications in the year since the Raft-rs
was last modified, which caused unforeseen problems.
All these factors led to unexpectedly amount of ex-
tra work, making it difficult to get our implementation
working within the short time-frame.

However, it is worth noticing that this in no way
invalidates the feasibility of a Rust implementation of
our design. We believe that our modification plan on
this code base is still feasible and can be completed if
more time is allowed. In retrospect, implementing our
design from scratch, as we have done in 5.2, would
have allowed us to avoid the aforementioned issues.
Additionally this implementation likely would’ve still
had better performance than our Python implementa-
tion due to the C/C++-level performance of Rust.

5

5.2. Python

Due to the Rust implementation issues discussed
above, we abandoned our Rust implementation, and
built an alternative Python implementation from
scratch. This implementation is a working example
of the transaction mechanism that we theorized above.
All of the nodes were run on their own process on the
same machine, and used queues for message passing.
We were able to build a working implementation for
the typical operation of the algorithm (the three stage
commits), and were able to benchmark it as shown be-
low.

6. Performance Evaluation

6.1. Rust

Due to the issues in our Rust implementation, we
do not have concrete numbers on Raft-BFT’s perfor-
mance in Rust at the time this paper is written. How-
ever, we did do some benchmarking to determine how
fast the signing algorithm is. Our benchmarking of
the ed25519-dalek Rust digital signature package [3]
on consumer hardware shows that generating a SHA-
512 digest of a given message and signing it takes an
average time of 2.2ms, and verifying it takes an aver-
age time of 2.7ms. This indicates that digital signature
will represent a large portion of the total computation
time, and therefore would lead to much higher higher
latency than non-BFT Raft implementations. Addi-
tionally, as we have the leader do key verification sepa-
rately, we would spend twice the amount of wall-clock
time on key validations as PBFT.

6.2. Python

For the Python performance tests, we can see that
there is throughput advantages for putting multiple
transactions together. It takes 23.0 ms for our imple-
mentation to run one transaction but it only takes 49.7
ms to run ten transactions. However, when there are
many transactions to run, for some reason our imple-
mentation gets slower. It takes 2.98 seconds to process
1000 transactions but 56.3 seconds to process 10000
transactions. We think this might have to do with our
implementation limiting the number of transactions
per entry to 1000, but we don’t understand why this
would make our code scale sub-linearly.

Figure 2. Performance benchmarking results for the Python
Raft-BFT implementation.

7. Code

You can find our Rust implementation at :
https://github.com/Jerrymouse23/

raft-rs
And our Python implementation at:
https://github.com/Gamrix/cs244b_

proj

References
[1] M. Castro, B. Liskov, et al. Practical byzantine fault

tolerance. In OSDI, volume 99, pages 173–186, 1999.
[2] Hoverbear. Raft-rs. https://github.com/

Hoverbear/raft-rs, 2017.
[3] I. Lovecruft. ed25519-dalek. https://crates.

io/crates/ed25519-dalek, 2017.
[4] D. Ongaro and J. K. Ousterhout. In search of an un-

derstandable consensus algorithm. In USENIX Annual
Technical Conference, pages 305–319, 2014.

[5] paenko. Raft-rs. https://github.com/
paenko/raft-rs, 2017.

6

https://github.com/Jerrymouse23/raft-rs
https://github.com/Jerrymouse23/raft-rs
https://github.com/Gamrix/cs244b_proj
https://github.com/Gamrix/cs244b_proj
https://github.com/Hoverbear/raft-rs
https://github.com/Hoverbear/raft-rs
https://crates.io/crates/ed25519-dalek
https://crates.io/crates/ed25519-dalek
https://github.com/paenko/raft-rs
https://github.com/paenko/raft-rs

