
Battleship: Byzantine Fault Tolerant Raft

Mitchell Dumovic and Saachi Jain

Abstract— We propose Battleship: a Byzantine Fault
Tolerant version of the consensus protocol Raft [1].
Battleship retains Raft’s centralized nature, aligning with
Raft’s original objective of an understandable consensus
algorithm while maintaining safety, fault tolerance, and
liveness under weak synchrony in a Byzantine envi-
ronment. We implement a prototype of Battleship in
Python, building off a previously existing open source
implementation of Raft called Zatt [3].

I. INTRODUCTION

Raft is a consensus algorithm used to manage a log
replicated onto multiple machines. Raft was designed
as a highly modularized protocol that would be easier
to understand than Paxos. In particular, Raft is highly
centralized, with a leader that can overwrite log entries
on followers in order to maintain consistency. Raft is
safe, fault tolerant, and live (under timing assumptions).

In systems with Byzantine behavior, a number of
faulty nodes can behave in an actively malicious man-
ner. Such an environment could occur due to cyber
attacks, errors, or consensus involving untrusted peers.
In this paper, we discuss Battleship: a byzantine fault
tolerant adaptation of Raft. We first discuss how Battle-
ship implements both log replication and leader elec-
tion. We then discuss our implementation of Battleship
in Python.

A. Related Work

There is a significant body of work dedicated to
creating Byzantine fault tolerant consensus systems. Of
particular significance is the Practical Byzantine Fault
Tolerance [2] (PBFT) protocol, which extends Paxos to
handle malicious nodes. PBFT is highly decentralized
to mitigate the damage of a faulty primary; other than
receiving the initial request, the primary plays no role in
coordinating consensus. Instead, PBFT uses broadcasts
to ensure safety in the face of faulty nodes.

However, broadcasts congest the network and lead
to high latency. Battleship seeks to avoid this issue
by maintaining the highly centralized nature of Raft.
Battleship has all operations funnel through the primary
via a three phase protocol. Moreover, unlike PBFT,
Battleship avoids situations where every node must

broadcast to every other node, resulting in a costly n2

number of messages in the network.

II. PROVIDING FAULT TOLERANCE IN RAFT

A. Raft Overview

Raft provides a centralized consensus protocol to
create a replicated state machine. The state machine
is implemented using a replicated log, where the log
contains a sequence of commands from a client. Raft
guarantees that these properties are true at any time:

1) Election Safety: at any time, there can only be
one leader for a particular term

2) Leader Append-Only: a leader only appends to
its log, never overwriting or deleting

3) Log Matching: if two nodes contain an entry at
the same index with the same term, then the logs
are identical up to that index.

4) Leader Completeness: if a log entry is commit-
ted, then that entry must be present in the log of
any leader thereafter

5) State Machine Safety: If a server applied a log
entry to its state machine at an index, no other
server should apply a different entry at that index.

Each of these properties are extended in Battleship
to only include non-faulty nodes, as we have no control
over a faulty node’s behavior.

B. Opportunities for Malicious Attacks in Raft

Malicious actors can break several of Raft’s safety
guarantees on both the log replication and leader elec-
tion front. A faulty leader could prevent safety or
liveness by ignoring client calls or falsifying responses.
Within the consensus protocol, a faulty node could
falsify a quorum by responding twice to two conflicting
requests, allowing conflicting entries to be committed
on non-faulty nodes. A faulty leader could delete com-
mitted entries by instructing backups to overwrite them,
or instruct replicas to commit entries that have not been
replicated.

In leader election, a faulty actor can vote for two
leaders and violate the election safety property. Faulty
nodes could also ensure that the leader is always faulty



by delaying the votes of any other candidate, preventing
the system from making progress.

C. Battleship Overview

We thus aim to create a protocol that remains safe
in the face of f faulty nodes. Faulty nodes can behave
arbitrarily and send incorrect messages. We also assume
that the adversary has power over the network: the
adversary can arbitrarily delay messages from any node
(including messages from non-faulty nodes). However,
we assume weak synchrony, in that messages cannot
be delayed indefinitely. More precisely, we assume that
the delay in a message cannot grow faster than a poly-
nomial function of time [2]. We introduce exponential
back-off in our timeouts for each term so that eventually
a term will exist where a non-faulty leader must be
elected under this timing assumption.

We assume that the client is trusted, and that any
genuine request that the client makes can be applied
to the log. Although outside the scope of this paper,
Battleship could be extended to perform access control
as long as each replica could identify the permissions
associated with a client.

D. A Non-Faulty Quorum

To provide byzantine fault tolerance, there must exist
a quorum Q such that the system remains both live
and safe after f failures. The minimum number of
replicas needed to ensure byzantine fault tolerance in
an asynchronous system is N = 3f+1, with a quorum
size Q = 2f +1 [2]. This ensures that a quorum exists
even if f nodes fail, and that the intersection of two
quorums includes at least one non-faulty node. Thus,
we assume there are 3f + 1 replicas for a Battleship
deployment designed to withstand f byzantine failures.

E. Cryptography

Battleship relies on quorums to provide safety guar-
antees. However, quorums only work if messages can-
not be spoofed; otherwise, a faulty node could simply
manufacture messages to artificially satisfy a quorum.
Thus, we use RSA digital signatures to sign all mes-
sages. The client and each of the nodes have a private
and public key. The public keys are known by all
members. One could use a trusted key server to retrieve
these public keys; the exact method to distribute these
public keys is beyond the scope of this paper.

Define D(m) as the SHA-256 hash of the message
m. Rather than signing an entire message, members
compute the hash of the message and sign the hash.
Thus, we denote 〈m〉i as a message signed in this

manner by node i. 〈m〉L is a message signed by the
current leader, and 〈m〉C is a message signed by the
client. Whenever a member q receives a message 〈m〉p
from node p, q uses p’s public key to verify that the
message was actually send by p. If the verification fails,
then q ignores that message. Thus, faulty nodes cannot
spoof messages from other nodes.

III. LOG REPLICATION

One of Battleship’s main challenges is implementing
log replication in the presence of faulty servers.

A. Making a request

In order to initiate an operation, the client creates
a request 〈r〉C and sends it to what it believes is the
current leader. After verifying the client’s signature, the
node i receiving the request checks to see if the request
has already been committed. If so, node i replies
directly back to the client with proof that the operation
has been committed. If node i is not the current leader,
i replies back to the client with a 〈REDIRECT, addrl〉i,
where addrl is the address of the current leader. Thus,
the client can contact the leader itself.

If the client does not hear the outcome of its re-
quested operation after a certain time period, the client
broadcasts the request to all nodes. This serves two
functionalities. First, the broadcast ensures that the
request will be sent to the current leader, even if a node
lies in a REDIRECT message. Secondly, this broadcast
triggers the time-out for leader election in the case of
a faulty primary (See section IV).

B. Defining an Entry

Like in Raft, an entry is defined by:
1) data: the data of the request, signed by the client
2) term: the term in which the request was issued

A single entry e can be in one of three phases:
1) Pre-Prepared: A pre-prepared entry is an entry

that appears in the log.
2) Prepared: A prepared entry is an entry that, at

one point, was pre-prepared on at least 2f + 1
nodes. A prepared entry can only be overwritten
by a PREPARE message (more below).

3) Committed: A committed entry has been stably
replicated (prepared) on 2f+1 replicas. Entries
which are committed can be applied to the state
machine and externalized to the client.

Log replication occurs in three phases:
PRE-PREPARE, PREPARE, COMMIT.



With these definitions, we redefine the Log Matching
safety property of Raft as: if two nodes contain an entry
at the same index with the same term that is prepared,
then the logs are identical up to that index.

Each node keeps track of currentTerm, which is
the last term it received a TERM CHANGE message for
(see below). Just as in the original Raft protocol, the
leader keeps track of a NextIndex for each of its
peers. The NextIndex is originally set to the last
entry of the leader’s log, and is backtracked in order to
overwrite a follower’s log.

C. Replicating a Value

When a leader receives a valid request 〈r〉C from a
client, it validates the signature and appends the request
to its log. This entry e is now pre-prepared.

Just as in the original Raft protocol, the leader keeps
track of a NextIndex for each of its peers. The
NextIndex is originally set to the last entry of the
leader’s log, and is backtracked in order to overwrite a
follower’s log.

After pre-preparing an entry e by appending it to
its own log, the leader broadcasts 〈 PRE-PREPARE,
term, e, prevLogIndex, prevLogTerm 〉L to its
followers. A follower will accept a PRE-PREPARE if
all of the following are true:

1) e has a valid client signature
2) term is equal to currentTerm
3) There is an entry in the follower’s log with index

prevLogIndex and term prevLogTerm.
4) If e is overwriting another entry then that entry

must not be prepared or committed.

Note that according to requirement 4, a leader cannot
overwrite a prepared entry with a PRE-PREPARE.
If follower i accepts the PRE-PREPARE, it deletes
the existing entry at that index (and all that follow
it), and appends e to its log. It then sends back
〈ACK PRE-PREPARE, e〉i to the leader.

If the PRE-PREPARE fails because condition 3 does
not hold, then this backup is out of date. The backup
notifies the leader, and the leader decrements the
follower’s NextIndex and tries to PRE-PREPARE
the entry previous to the failed PRE-PREPARE. This
backtracking mechanism occurs exactly as it does in
the original Raft protocol.

The leader collects 2f+1 〈ACK PRE-PREPARE, e〉i
from its followers (including itself). These messages are
assembled into the object Pe, and provides proof that
2f + 1 peers in the network have pre-prepared e. The

leader then marks the entry on its own log as prepared
and broadcasts 〈PREPARE, e, Pe〉L to its followers.

A follower i accepts a 〈PREPARE, e, Pe〉L if
the proof Pe contains at least 2f + 1 valid
ACK PRE-PREPARE messages for that entry from
different peers. It then overwrites the existing entry at
that index with e (if e was not already there) and marks
e as prepared. It then sends back 〈ACK PREPARE, e〉i.

The leader collects 2f + 1 〈ACK PREPARE, e〉i
messages. and messages assembles them together into
Ce which serves as proof that 2f + 1 peers in the
network have prepared e. Now the entry has been stably
prepared, and can thus be committed and externalized.
The leader marks the entry as committed, applies it
to its state machine, and sends back 〈RESULT, Ce〉L
to the client. Notification of commit, along with the
proof Ce, is piggy-backed to the followers in the next
PRE-PREPARE, at which point the followers commit
the entry, apply e to their state machines, and store Ce

for future reference.

D. Log Replication in Practice

While a three-phase approach makes sense for ex-
planatory purposes, in practice these phases can be
bundled into a single UPDATE message as follows.

Instead of keeping the replication state (pre-prepared,
prepared, and committed) per entry, each node keeps
track of three indices:

1) CommitIndex: index of the last commit
2) PrepareIndex: the index of the last prepare
3) PrePrepareIndex: the index of the last pre-

prepare
Naturally CommitIndex ≤ PrepareIndex ≤
PrePrepareIndex. Entries up to and including
CommitIndex have all been committed. Entries in
the interval (CommitIndex,PrepareIndex] have
been prepared. Entries after PrepareIndex have
only been pre-prepared.

An UPDATE message to a peer contains the log
entries from the peer’s NextIndex up until the end
of the leader’s log, the leader’s PrepareIndex and
CommitIndex, and a proof P . P contains the latest
responses from the peers to the leader’s UPDATE
and prove that both the PrepareIndex and the
CommitIndex are valid. A follower then performs
the three phases of verification from the above section,
updating its log and moving its PrepareIndex and
CommitIndex appropriately.

A precise description of the UPDATE is described
in RPC 1. Bundling the 3 phases into one update



reduces the size and number of messages sent across
the network. Moreover, with a consolidated update, it is
possible to pre-prepare, prepare, and commit multiple
entries at once. This improves performance as each
entry does not need to work through the sequence of
pre-prepare, prepare, and commit sequentially.

RPC 1 UPDATE
Invoked by leader to replicate onto followers
Arguments:

– entries[]: log entries from nextIndex onward
– prevLogIndex: nextIndex - 1
– term: leader term
– leaderPrepare: the leader’s prepare index
– leaderCommit: the leader’s commit index
– proof: Map of peer → peer’s latest UPDATE

response
Response:

– prePrepareIndex: this peer’s updated prePre-
pareIndex

– logHash: SHA-256 digest of the log up through
the prePrepareIndex

– prepareIndex: this peer’s updated prepareIndex
– logPrepareHash: SHA-256 digest of the log up

through the prepareIndex
Receiver implementation

– Validate the signatures on the entries and the proof
– Create a ”hypothetical log” which is what the

peer’s log would look like with the entries added
– For each message in the proof, re-calculate the

logHash and the logPrepareHash on the relevant
entries of the hypothetical log. If the logHash
or logPrepareHash does not match, ignore that
message of the proof.

– Validate that there are 2f + 1 valid messages in
the proof with a prePrepareIndex ≥ leaderPrepare.
Also validate that there are 2f +1 valid messages
with a prepareIndex ≥ leaderCommit.

– Check to make sure that leaderPrepare ≥ the
peer’s prepareIndex. If not, the leader is trying to
overwrite a prepared entry with a pre-prepare, so
the receiver should reject.

– Replace the peer’s log with the hypothetical log.
Prepare up to the leaderPrepare and commit up to
the leaderCommit. Store the proof sent as proof
of commit.

IV. LEADER CHANGE

A. Foregoing Leader Election in Favor of Round Robin

Naive leader election is problematic in a system
with malicious nodes. In any leader election scheme,
faulty nodes can choose to delay messages of all other
candidates except itself and always become leader.
Other nodes have no way of knowing that they need
to choose someone other than a faulty node. Therefore,
the faulty node can just make sure its message is sent
out first and therefore will always be elected.

We thus forego Raft’s leader election in favor
of a round robin algorithm influenced by PBFT’s
VIEW-CHANGE process. We assign each node an iden-
tification number. Let n be the total number of nodes
(i.e 3f + 1). For each proposed term t, only the node
with identifier t mod n can be the leader. Since we
cycle through leaders, faulty nodes cannot dominate the
leader election.

B. Transitioning to a New Term

If the client has not heard a successful response to
its request from the primary, the client broadcasts the
request to all backups. Unless the request has already
been committed, the backups start a timer to trigger
a term change. We use timers with exponential back-
off; after a timer expires, the timer is reinstated with
twice the timeout until progress is made. The timer is
canceled and the timeout is reset if the backup receives
a successful command to commit an entry.

When a backup i times out, it calculates a
proposedTerm = currentTerm+1. It then sends
to the proposed leader of proposedTerm the mes-
sage 〈TERM CHANGE, commitIndex, P , entries
〉i where commitIndex is the backup’s commit point,
P is proof of commit and prepare, and entries is are
the prepared entries that have not been committed.

The new proposed leader L′ gathers 2f
TERM CHANGE messages from its peers. L′ validates
commitIndex and attached prepared entries
using P , and then compiles these messages into PTC ,
which provides proof that L′ is a validly elected leader.
Just as in Raft, the leader must have the most up to
date log. However, from the TERM CHANGE messages,
L′ has the information it needs to construct the most
up to date log even if the node was not the most up to
date before the term change. For each TERM CHANGE
message m:

1) Starting at m.commitIndex with the attached
m.entries, L′ creates a hypothetical log. It



then re-computes the log hashes on this hypo-
thetical log. If L′ discovers that it does not have
the entry corresponding to the latest committed
value, it invalidates itself as leader and we must
wait until the next term to get work done.

2) Otherwise, L′ adds the hypothetical log as a
candidate log.

L′ picks the candidate log that is most up to date, as
defined in the Raft paper. In particular, it picks the log
with, in order of priority:

1) The highest commit index
2) The last prepared entry with the highest term

number
3) The highest prepared index
L′ then broadcasts the message 〈 NEW TERM,

proposedTerm, PTC〉L′ becomes the new leader.
Backups who hear a valid NEW TERM proposing a term
higher than their current term accept the new leader,
adjusting their currentTerm to the proposed term.

If the backup times out again because no progress has
been made, the backup increments its proposedTerm
and sends out another TERM CHANGE to try to elect
the next leader in the round robin.

V. CORRECTNESS

In order to prove that Battleship is correct, we show
that our protocol both maintains Raft’s safety properties
and allows the system to make progress under weak
synchrony.

A. Election Safety:

Battleship round robins through potential leaders via
the term change protocol. Thus, there can only ever be
one leader assigned to a given term. Moreover, since the
majority of nodes must agree on a term and the term
number is chosen sequentially, a faulty node cannot
simply choose a term number that makes it the leader.

B. Leader Append Only

Our protocol continues to have leaders only append
to their log. A faulty leader could decide to overwrite
a value, but will not be able to unilaterally override a
prepared value and thus cannot write over entries that
could be externalized.

C. Log Matching

The log matching property is satisfied if, when two
non-faulty logs share an entry that is prepared with the
same index and term, the logs are identical up until that
term. This has to occur because entries are prepared in

relation to a hash of the log up until that entry. More
specifically, a PREPARE command contains 2f+1 pre-
Prepare commands whose log hashes all have to match.
Thus, if any node prepared an index due to a PREPARE,
they must have an identical log to the prepare proof up
until that index.

D. Leader Completeness and State Machine Safety

We first prove the following property: if an entry
is committed by any non-faulty node, 2f other nodes
must have that node prepared or committed and (for
at least f + 1 of those nodes) that entry will never be
overwritten. This is because a committed index must
have been prepared by 2f + 1 nodes. A prepare can
only be overwritten by a PREPARE message. In order
to overwrite a prepare, a leader must have evidence that
2f + 1 nodes are willing to PRE-PREPARE over the
entry. However, it is impossible for any leader to garner
those 2f +1 PRE-PREPARE votes since 2f +1 out of
the 3f + 1 have promised not to PRE-PREPARE over
the entry, and of those only f can be faulty.

Given this property, we can now prove both Leader
Completeness and State Machine Safety. Suppose that a
leader has committed an entry e. That means there is a
set of 2f+1 replicas who have either stably committed
or prepared e (as above). A new leader needs 2f + 1
TERM-CHANGE messages to start a new term. Since
two quorums must intersect at a non-faulty node, there
must be a non-faulty node (let’s call it i) who stably
committed or prepared e and participated in the term
change. Since that entry cannot be overwritten, there
cannot exist a node with a more up to date log than
i that does not contain e. Therefore the leader (if it
is non-faulty) will construct a log with e. Even if the
new leader is faulty, since e cannot be overwritten,
e will continue to exist on 2f + 1 replicas so the
same properties will continue to hold until a leader
election commences with a non-faulty leader. Thus,
leader completeness holds.

State machine safety is a direct result of the property
we proved above. Entries are only applied by non-faulty
nodes when they are committed. Since a committed
entry cannot be overwritten or prepared with a later
value, if an entry was applied to the state machine of
a non-faulty node, no other node will apply a different
entry at that index.

There are a few miscellaneous safety properties that
need to be added in the byzantine environment. Firstly,
a node cannot lie to the client about a commit, because
that node needs provide proof of commit. Secondly,



since we use cryptographic signatures, a leader cannot
forge a client request. As stated above, we assume
that the client is trustworthy; Battleship loses its safety
properties if a trusted client can send malicious re-
quests.

E. Liveness

Under weak synchrony, Battleship always has the po-
tential to terminate. This is because leader elections are
triggered when no progress has been made. Since leader
elections are conducted with exponential backoff, there
will eventually exist a proposed term for a non-faulty
leader where the adversary cannot delay the messages
to prevent a term change. Once a non-faulty leader is
elected, it can make progress toward committing the
request.

Moreover, a non-faulty leader will never become
stuck when trying to commit a new request. A leader
only fails to replicate a request if f + 1 nodes have
already prepared another value at that index, preventing
the leader from getting 2f + 1 ACK PRE-PREPARE.
However, if f + 1 nodes prepared a value, that value
would have appeared in the term change, so the leader
would already have that value and would not try to
overwrite it.

VI. IMPLEMENTATION DETAILS

We implemented a prototype of this algorithm in
Python. The full source code of our implementation
is available at https://github.com/scoutsaachi/zatt. Our
prototype is built off of an existing open source imple-
mentation of non-BFT Raft called Zatt[1]. Zatt includes
log replication, leader election, membership changes,
and log compaction. For our prototype, we did not
implement membership changes and log compaction.
Our prototype uses the asyncio module to periodically
send messages and set timeouts. We used Python’s
pycrypto module to generate hashes and public/private
keys.

A. Server Nodes

On startup, each server node loads a configuration
file containing the the (IP, Port) pairs for the cluster
and the location of a directory containing that node’s
private key, the public keys of every other node, and
the public keys of any trusted clients.

Each server can be in one of three states: Leader,
Follower, and Voter extending a generic State
class. The Leader and Follower behave as described in
the log replication sections above. A Follower switches
to the Voter class on time-out. Voters ignore all update

messages sent from leaders in any term and send peri-
odic TERM CHANGE messages to the leader for the next
proposed term. Each server has an Orchestrator
responsible for transitioning the node between states
and sending and receiving messages to and from clients
and peers.

B. Client Nodes

The client is implemented through a simple key-
value store class called a DistributedDict, which
subclasses a normal python user dictionary. The
DistributedDict is initialized with the cluster
information, the public keys for each of the nodes in the
cluster, and the client’s secret key used to sign messages
to the leader. When an entry is added to or deleted from
the dictionary, the client sends a request to the node it
believes to be the leader to add an entry to the state
machine for that request. If the client receives a redirect
response, it updates the value of what it believes to
be the current leader accordingly. If the client does
not receive a valid response after a certain time, it
broadcasts the request to all nodes in the cluster.

VII. CONCLUSION

We presented Battleship, a consensus protocol based
off Raft which implements consensus in a system where
nodes can exhibit Byzantine failure. Battleship main-
tains the safety, fault tolerance, and liveness properties
of Raft by adding an extra phase to the commit proto-
col. Additionally, Battleship forces all nodes and clients
in the system to cryptographically sign messages, and
only updates commit and prepare points when given
proof. Timeouts and elections are set such that a faulty
node cannot permanently prevent progress in the sys-
tem. Overall, Battleship maintains the Raft’s centralized
nature while extending it to handle malicious actors.

REFERENCES

[1] Diego Ongaro and John K. Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX Annual
Technical Conference, USENIX ATC 14, Philadelphia, PA,
USA, June 19-20, 2014., pages 305319, 2014

[2] M. Castro, B. Liskov, Practical Byzantine Fault Tolerance, 3rd
OSDI, 1999.

[3] Simon Accascina, Zatt, (2017), GitHub repository,
https://github.com/simonacca/zatt

https://github.com/scoutsaachi/zatt
https://docs.python.org/3/library/asyncio.html
https://pypi.python.org/pypi/pycrypto
https://github.com/simonacca/zatt

	Introduction
	Related Work

	Providing Fault Tolerance in Raft
	Raft Overview
	Opportunities for Malicious Attacks in Raft
	Battleship Overview
	A Non-Faulty Quorum
	Cryptography

	Log Replication
	Making a request
	Defining an Entry
	Replicating a Value
	Log Replication in Practice

	Leader Change
	Foregoing Leader Election in Favor of Round Robin
	Transitioning to a New Term

	Correctness
	Election Safety:
	Leader Append Only
	Log Matching
	Leader Completeness and State Machine Safety
	Liveness

	Implementation Details
	Server Nodes
	Client Nodes

	Conclusion
	References

