
Tail Latency in ZooKeeper and a Simple Reimplementation

Michael Graczyk

Abstract—ZooKeeper [1] is a commonly used service for coor-
dinating distributed applications. ZooKeeper uses leader-based
atomic broadcast for writes, so that all state modifications are
globally totally ordered, but it allows stale reads from any
server for high read availability. This design trades high read
throughput for potentially high write latency. Unfortunately,
the extent of this tradeoff and the magnitude of ZooKeeper’s
tail latency is unclear. Although [1] presents average request
latency, tail latency is often far more important in real world
applications [2] [3]. In this paper, we remedy this lack of
information with three experiments.

As a baseline, we also implemented a system called Safari
[9] with the same API as ZooKeeper, but specifically de-
signed for lower worst-case write latency. We examine the two
systems’ latency characteristics in a single-machine and two
realistic production environments. We also offer explanations
for their performance differences and design tradeoffs, as well
as some comments on practically deploying ZooKeeper and
Safari.

1. Introduction

Distributed systems are notoriously complicated to build.
ZooKeeper has become popular largely due to its use as
a building block to make other distributed systems less
complicated. Developers rely on ZooKeeper’s strong write
consistency and high read availibility to offload design
complexity and make their own systems simpler. For ex-
ample, FaRM [4] uses ZooKeeper to manage configuration
so that the authors can focus on high performance design
and make rare, hairy failure recovery simple. FaRM avoids
using ZooKeeper in the critical path, presumably because
of ZooKeeper’s relatively high latency. Apache Kafka [5],
a real-time stream processing platform, uses ZooKeeper to
manage cluster membership, leadership, and various other
metadata. As with FaRM, Kafka avoids using ZooKeeper in
the system’s critical path.

Despite ZooKeeper’s common usage and many bench-
marks reporting its average case latency [6], there do not
seem to be any reports of the system’s tail latency under
load. Tail latency is amongst the most important perfor-
mance characteristics in many real-world systems because
these systems are composed of many interdependent com-
ponents. With high ”fan out”, even rare spikes in latency
amongst a small number of components can cause the
overall system to respond slowly on average. Accurate char-
acterization of ZooKeeper’s worst case latency is important

for potential application developers to determine how best
to fit ZooKeeper into high fan-out systems.

Certain aspects of ZooKeeper’s design could lead to oc-
cassionaly high request latency. Some members of the com-
munity have suggested that latency is primarily determined
by the time spent spent by followers fetching data from the
leader [7]. This characteristic suggests that ZooKeeper could
potential have lower latency with a leaderless design.

In order to compare ZooKeeper to a low latency base-
line, we implemented a system called Safari. Safari aims to
provide the same consistency guarantees as ZooKeeper with
lower tail latency, while sacrificing read and write through-
put, availability during network partitions, and features.
Our system is currently incomplete and does not provide
linearizability as intended, but serves as an optimistic lower
bound on latency that could be achieved for any system with
ZooKeeper’s API and consistency.

2. Safari

Although our aspirations for Safari were higher, the
system as currently implemented is extremely basic. Each
server stores a copy of the ZooKeeper tree-of-znodes data
structure. Clients modify state by sending a modification re-
quests to all servers. Clients read state by requesting it from
all servers, and returning the data to the client application
once a majority of servers have returned the same value. All
communication is done using UDP based message passing.
That is, there is no connection state. Messages are currently
restricted to fit in a single UDP packet, so znode data must
be no greater than than ≈ 60kB. We have not implemented
watches or sequential znodes, but these would be easy to
add the the existing system.

Although we believe the system offers linearizable state
changes, it is currently useless in practice. The system can
quickly become unavailable when multiple clients make
state modifications concurrently, especially when latencies
are large. Although the system remained available during our
local experiment, it frequently halted during our real-world
deployment experiments. As a result, Safari’s latencies
in these experiments should be interpreted as a lower
bound on any ZooKeeper-like system. Still, we believe
that the reported read latencies are achievable because in
most cases (ie, the network is not partitioned and servers
have not failed) reads could behave exactly as they do in
the current implementation even with changes to make the
system more available.

We had hoped to implement a leaderless consensus
algorithm like AllConcur [10] to keep the system available



and automatically resolve conflicts while preserving low la-
tency. This would also decrease read latency because clients
could deliever results to applications after receiving just
one successful response, rather than waiting for a majority.
However, we have not completed this implementation in yet.

We defer most discussion of implementation details to
a video describing the system [8] and the source code [9].
Additional message passing would be required to resolve
these conflicts when they are detected, so the system’s
latency provides a loose lower bound on what could be
expected from a ZooKeeper implementation with the same
consistency.

3. Experiment Setup

We tested ZooKeeper and Safari’s latencies using three
tasks under three experimental settings. In order to mea-
sure the relative overhead of the software implementations
themselves, rather than the algorithms and their messaging
latency, we first ran the client and servers on a single 2017
Macbook Pro. For the next two experiments, we deployed
ZooKeeper and Safari on AWS EC2 m3.xlarge instances
with attached SSDs.

In our second experiment, we ran the systems with two
servers in the same west coast data center, and a third
server on the east coast. The client was also located in
the west coast data center. This experimental setup offers
resiliance to the loss of a single machine in the west coast
data center, or the entire east coast data center. In principle,
a quorum system with this configuration should have low
latency because the two colocated servers could commit
writes as a quorum with low latency while the east coast
data center operates as a follower.

For the third and final experiment, we ran servers on
three different data centers in Northern California, Oregon,
and Virginia. The client also ran in Northern California. This
setup offers resiliance to the loss of any data center, but any
robust system must pass messages between datacenters to
commit writes. Under these circumstances, systems which
minimizes total sequential messages should have the best
latencies.

Each experiment consisted of three tasks run sequen-
tially. In the first task, a single client creates 5 keys with
1000 bytes of data and reads data from a randomly selected
key 1000 times. This tasks tests the systems’ best case read
latencies. In the second task, a single client creates 5 keys
and writes 1000 bytes to a randomly selected key 1000
times. Like the first task, this one tests the sytems’ best
case write latencies.

The third and most important tasks consists of mixed,
conflicting reads and writes. We create 5 keys with 1000
bytes of random data, then start 6 concurrent clients. Each
client does the following as fast as possible.

• Select a ”read key” at random and read the data from
this key.

• Select a ”write key” at random.
• If the selected ”read key” is even, write all but the

last byte read to the ”write key”.

• If the selected ”read key” is odd, append a byte to
the data and write it to the ”write key”.

• Repeat the process indefinitely or 1000 times if this
is the first client.

The above process simulates heavy read-write contention
and should stress ZooKeeper because of its centralized
leader. Even followers will be stressed because they will
constantly receive updates from the Zab leader.

4. Results and Evaluation

Figures 1 through 6 show the latencies of the two sys-
tems under each of the nine tasks and experiments. Figure 7
shows the average, 99%, and 99.9% latencies for the mixed
conflicting read-write task of each experiment.

The results show that ZooKeeper has much lower la-
tency for reads than writes. In addition, read latency during
conflicting writes is significantly higher than Safari. We
believe that ZooKeeper’s read latency could be improved
through the use of UDP instead of TCP, C++ instead of
Java, and with clients sending requests to multiple servers
and awaiting the first response rather than always using the
same server.

We can see from Figure 7 that tail latency is fairly good
in both systems. In both real world settings, ZooKeeper’s
99.9% latency is no more than 2x its average latency. Safari
has must lower tail latency in the two datacenter deployment
because read requests can complete successfully with no
round trips outside of the west coast datacenter. Even in the
three datacenter settings, Safari has low tail latency, only
≈ 5% greater than the average latency. This is because reads
complete successfully as soon as the client receives any two
responses, so slow responses from any one data center do
not matter.

Figure 7 also shows the surprising result that ZooKeeper
had worse latency in the two datacenter deployment than in
the three datacenter deployment. We believe this is probably
caused by the west coast client accessing the east coast
server for reads, although this claim should be investigated
further.

We claimed that Safari was designed to minimize la-
tency. Indeed, the Figures clearly show that Safari has more
consistent and much lower tail latency than ZooKeeper.
This is not surprising considering the Safari’s shortcomings.
However, the local experiment in particular demonstrates
that ZooKeeper’s latency could be drastically improved by
changes to the implementation.

We also found that ZooKeeper performed inconsistently
across runs of the same experiment. Typically each run
would take just a minute or two. Roughly one third of the
time, ZooKeeper would crawl at a pace such that it would
have taken almost an hour to finish the experiment. This
may have been caused by clients selecting distant servers
from which to read, and could probably have been resolved
through reconfiguration, tuning, or with different client soft-
ware. However, we were surprised that performance was so
inconsistent in a seemingly typical deployment.



Overall we found ZooKeeper deployment to be fairly
simple. All of the code necessary to download and run
ZooKeeper on EC2 can be found in roughly 5 lines of shell
script and 15 lines of ZooKeeper configuration. Although
we had to manually tell each ZooKeeper server the IP
addresses of all other servers, this could be made less painful
by spending more and purchasing long-lived IPs instead
of the transient ones we used, or using managed DNS.
Safari was of course also easy to configure. Athough the
current implementation accepts a list of peer servers, servers
never send messages to one another. The only necessary
configuration is to choose a UDP port on which the servers
listen for messages.

Figure 1. Zookeeper Latency on a Single Machine

0

5

10

Re
ad

0.0

0.1

0.2

W
rit

e

10 1 100 101

time (ms)

0.0

0.1

0.2

0.3

M
ix

ed

Figure 2. Safari Latency on a Single Machine

0

5

10

Re
ad

0

10

20

30

W
rit

e

10 1 100 101

time (ms)

0.0

2.5

5.0

7.5

M
ix

ed

5. Future Work

Safari is largely incomplete. Although the basic system
is implemented, it quickly becomes unavailable because it

Figure 3. Zookeeper Latency Distributed Across Two Datacenters

0

5

10

Re
ad

0.0

0.5

1.0

1.5

W
rit

e

10 1 100 101 102

time (ms)

0.0

0.1

0.2

0.3

M
ix

ed

Figure 4. Safari Latency Distributed Across Two Datacenters

0

20

40

60
Re

ad

0

20

40

60

W
rit

e

10 1 100 101 102

time (ms)

0

2

4

M
ix

ed

does not automatically resolve conflicts during concurrent
writes. This makes the system completely useless for any-
thing besides providing a latency baseline for ZooKeeper.
The system could be made more available by adding a
leaderless atomic broadcast algorithm such as AllConcur
[10] for resolving conflict.

6. Conclusion

Despite the importance of tail latency in the design and
provisioning of real-world systems, and despite ZooKeeper’s
popularity, we could not find resources examining ZooKeep-
ers tail latency in detail. In this paper we provided our
own measurements in several realistic deployments. We
found that ZooKeeper behaves mostly as expected, but with
surprising inconsistency. Reads have much lower tail latency
than writes, especially when there is no write contention.
Tail latency is quite good overall, with 99.9% latency within
2x average latency in both real world settings.



Figure 5. Zookeeper Latency Distributed Across Three Datacenters

0

2

4

6

Re
ad

0.0

0.5

1.0

1.5

W
rit

e

1022 × 101 3 × 101 4 × 101 6 × 101

time (ms)

0.00

0.05

0.10

0.15

M
ix

ed

Figure 6. Safari Latency Distributed Across Three Datacenters

0

2

4

Re
ad

0

5

10

W
rit

e

1022 × 101 3 × 101 4 × 101 6 × 101

time (ms)

0

2

4

M
ix

ed

Figure 7. Mixed Read-Write Latency Statistics (ms)

Average 99% 99.9%
Local ZooKeeper 13.414 26.090 33.073
Local Safari 0.307 0.441 1.341
2 Datacenter ZooKeeper 148.230 272.393 279.877
2 Datacenter Safari 0.728 1.052 1.439
3 Datacenters ZooKeeper 76.873 93.481 94.716
3 Datacenters Safari 45.981 46.391 47.748



References

[1] Hunt et. al. "ZooKeeper: Wait-free
coordination for Internet-scale systems".
dl.acm.org/citation.cfm?id=1855851

[2] DeCandia et. al. "Dynamo: Amazons
Highly Available Key-value Store".
dl.acm.org/citation.cfm?id=1294281

[3] Dean, Barroso. "The Tail at Scale".
dl.acm.org/ft_gateway.cfm?id=2408794

[4] Dragojevi et. al. "No compromises:
distributed transactions with consistency,
availability, and performance"
dl.acm.org/citation.cfm?id=2815425

[5] Apache Kafka. https://kafka.apache.org/

[6] Patrick Hunt. "ZooKeeper service latencies
under various loads & configurations"
https://wiki.apache.org/hadoop/ZooKeeper/ServiceLatencyOverview

[7] http://grokbase.com/t/kafka/users/1523ht96m5/kafka-long-tail-latency-issue

[8] https://drive.google.com/open?id=1PEm2sHj1Vokx812VfvHQP3s9Vy1TacWb

[9] https://github.com/mgraczyk/cs244b-project

[10] Poke et. al. "AllConcur: Leaderless
Concurrent Atomic Broadcast (Extended
Version)" https://arxiv.org/abs/1608.05866


