
Profiling Microservices
John Humphries, Konstantinos Kaffes

Stanford University

Abstract—We present a method for tracing the execution
of RPC calls between microservices to understand the
call tree and determine where bottlenecks arise. We show
how the metadata propagated through our microservices
system can later be reconciled and automatically rendered
into a clear and digestible visual of the system. In our
setup, we use Nameko - a popular, open-source microser-
vices framework written in Python - to run microservices
and propagate metadata throughout the system. We then
show that our technique results in little additional over-
head on the system and on administrators using our tool.

Keywords: microservices, profiling, tracing, nameko

I. INTRODUCTION

In recent years cloud computing has been moving
towards finer granularity. Initially, providers offered bare
metal machines that clients had to reserve for long peri-
ods of time. However, this model was not economically
viable for both users and providers. The former might
want to use processing power intermittently or for short
periods of time but had to pay as if they used it continu-
ously while the latter would have tons of unused capacity
they could not resell to other clients. That is why the
cloud providers started offering Virtual Machines (VMs).
This allowed them to multiplex different clients on the
same hardware and increase utilization while clients
could power off their VMs and not pay while they are
not using them. The next step was the introduction of
containers: enclaves of software within the same operat-
ing system that use various operating system features
to ensure isolation and security. Containers are more
lightweight than virtual machines and boot much faster,
allowing faster scaling of services. The most recent trend
in cloud computing is serverless. While technically it still
uses containers, the programming model is simpler and
more developer-friendly. Users upload functions written
in some high level language which are triggered by
events, such as the upload of a photo to a social network.
Even more recently, the immense scaling cloud providers
offer for these functions has been used for scientific
and data analytics workloads [7] that require immense
parallelism. However, under the hood, each function still
runs in its own container.

Similar changes took place in the software design do-
main. Initially, most code development was monolithic.
In monolithic applications, all components of a com-
plicated system are developed, compiled, and deployed
together. The more complex an application becomes and
the more developers work on it, the harder it is to
keep it under control. Developers are bound to the same
stack, e.g. .NET, while different languages/frameworks
might be more suitable for different components of the
application. It is also impossible for a single team to
have an understanding of the entire application. The
aforementioned reasons are why big enterprises started
moving towards tiered architectures. In applications fol-
lowing this type of architecture, user interface, request
processing and data management are both physically
and logically separated. Hence, each of these layers can
be reused among different applications and modified
separately. The natural extension of this design choice
is to break each application layer even further into its
individual components. This architectural style - applica-
tions consisting of loosely coupled independent services
- is called microservices.

The emergence of tiered and microservices architec-
tures raised issues regarding monitoring, tracing and root
cause analysis that did not even exist in traditional mono-
lithic applications. The fact that microservices can run
on different machines, and even in different datacenters,
makes these problems more challenging. In this paper,
we propose a tracing mechanism for a particular mi-
croservices framework, Nameko, measure the overhead
it incurs, and present several cases that highlight its use
and functionality.

In the next section, we present microservices in gen-
eral, and Nameko in particular, in more detail. Then,
we analyze the tracing mechanism we implemented and
analyze its overhead. In section 4 we show how it can
be used in several cases. Finally, we compare against
related work and draw some conclusions.

II. MICROSERVICES

According to Netflix Cloud Architect Adrian Cock-
roft, microservices architecture is service-oriented ar-

chitecture composed of loosely coupled elements that
have bounded contexts [14]. Each component, called a
microservice, fulfills a simple and self-contained role.
”Loosely coupled” means that services are developed
and updated independently. We say that microservices
have bounded context if they are self-contained and
use strict APIs to interact with each other without
sharing object representations and data stores. Having
separate data stores for each microservice is important as
making a schema update might break compatibility with
other services that share the same schema. Also, using
microservices allows developers to avoid some of the
worst complications of distributed systems. Servers are
stateless and therefore interchangeable within the same
service. State is pushed down to the data store, which
handles replication and availability automatically. Hence,
the only concern of system administrators is scaling the
number of servers associated with each microservice
according to the load.

Microservices have been used extensively in recent
years, in fields ranging from e-commerce [4] to video
streaming. One of the most prominent and successful
adopters of microservices is Netflix. Struggling to scale
its monolithic architecture to cope with its immense
growth rate, Netflix switched to microservices hosted
in a public cloud (AWS). Uber, having to cope with
similar growth and requiring high development velocity,
has distributed its functionality across more than 500
microservices. Seeking efficient and secure ways to
implement inter-service communication, Uber engineers
are using Apache Thrift [6]. Thrift is a software library
and code generation tools developed at Facebook with
the goal of enabling efficient and reliable communica-
tion across programming languages and frameworks. It
allows developers to define data types and interfaces in
a simple, declarative language.

However, not all companies have the resources to de-
velop their own microservices substrate. Therefore, many
frameworks have been developed that allow program-
mers to focus on the logic of their applications instead of
having to handle low-level distributed systems problems
such as communication, replication, and reliability. There
is a large variety of such frameworks implemented in
many different languages. Micro [12] is a microservices
ecosystem that provides support for RPC, service discov-
ery, load balancing, and synchronous and asynchronous
communication. Gizmo [11] is a similar toolkit imple-
mented by the New York Times IT team, while Go-
kit [] focuses on interoperability and interaction with
disparate non-Go-kit services. Finally, there are many

JVM-based frameworks such as Dropwizard [13]. Due
to familiarity with the Python language, we decided to
examine a framework based on Python: Nameko [9].

A. Nameko

Nameko is a popular microservices framework devel-
oped in Python. It uses RabbitMQ, a message queuing
system, to propagate requests among microservices. It
supports:

• Remote Procedure Calls over AMQP
• Asynchronous events over AMQP
• Simple HTTP GET and POST requests
• Websocket RPC and subscriptions

Nameko allows users to build a service that can respond
to RPC messages, dispatch RPC messages and events
on certain actions, and listen for events from other
services. Nameko also allows users to define their own
transport mechanisms and service dependencies. Each
microservice is implemented as a Python class with the
special rpc decorator denoting methods that can be called
through RPC. A key feature of Nameko is dependencies
which allow services to abstract away access to other ser-
vices and service/system components. Dependencies are
added to a service class declaratively and are responsible
for providing objects that are injected into service class
instances. These instances, called workers, are stateless
and are created when an entry point (RPC call, HTTP
request or publication in some queue) fires. The life cycle
of a worker is as follows:

• Entry point fires
• Worker is instantiated from service class
• Dependencies are injected into the worker
• Method executes
• Worker is destroyed

A significant shortcoming of Nameko and many Python
frameworks in general is that they provide concurrency
but not parallelism. Each worker executes in its own
”green thread,” i.e. userspace thread, and these threads
are multiplexed on the same kernel thread. The schedul-
ing of green threads is cooperative (i.e. they yield either
when they finish execution or when they block on I/O).
The advantages of this approach is that there is no
need for locking (the workers are stateless anyway) and
userspace threads spin up much quicker than kernel-
space threads. In listing 1 we see an example of a
Nameko service that has an RPC entry point and depends
on another service.

1 from nameko . r p c i m p o r t rpc , RpcProxy
2

3

4 c l a s s I d S e r v i c e :
5 name = ’ i d s e r v i c e ’
6

7 @rpc
8 d e f g e t i d (s e l f) :
9 r e t u r n 0

10

11 c l a s s G r e e t i n g S e r v i c e :
12 name = ’ g r e e t i n g s e r v i c e ’
13

14 i d s e r v i c e = RpcProxy (’ i d s e r v i c e ’)
15

16 @rpc
17 d e f h e l l o (s e l f) :
18 r e t u r n ” Hel lo , {} wi th i d {} ! ” .

f o r m a t (name , s e l f . i d s e r v i c e . g e t i d
())

Listing 1: Nameko example

Nameko’s inter-service communication relies on Rab-
bitMQ [10]. RabbitMQ is a message queuing framework
that works with a variety of programming languages and
features. It uses the Advanced Message Queuing Pro-
tocol to send messages efficiently among applications.
AMQP is a wire-level protocol for high performance
networking. It is an open standard and therefore it
can be used by different services and allows Nameko
to work with them. RabbitMQ also supports different
types of distributed brokers for scaling, replication, and
availability.

III. PROFILING NAMEKO

As mentioned before, a system implemented as a col-
lection by many microservices can be large and difficult
to debug, particularly as the microservices interact with
each other. A tracing framework/profiler would allow
users and administrators to answer the following very
important questions:

• If a request fails, which microservice caused the
failure?

• If a request is slow, where is the bottleneck of the
system? How do bottlenecks appear and disappear
with different patterns of network traffic?

• How can one understand the layout and implemen-
tation of a large system when there is little or no
documentation?

We provide answers to these questions by implement-
ing a tracing/profiling framework on top of Nameko.
Metadata are inserted at different points during the
processing of an RPC call. These metadata include
timestamps, a hierarchy of RPC calls, and the host names
of the machines in which the calls are executed. Both
synchronous and asynchronous RPC calls are supported.

Fig. 1: Metadata injection points during an RPC execution.

We also created script that can render the metadata to
produce a convenient and illustrative visualization of
how each request flowed through a distributed system
along with how much time was spent processing in each
service.

In Figure 1 we see exactly when metadata are injected
during the execution of an RPC. All entries include the
aforementioned metadata. When an RPC call is made,
an rpc-request entry (1) is added to the message headers.
When the RPC is received by the callee, the metadata
headers together with an rpc-receive entry (2) are saved
in the service worker’s context. The worker proceeds
with its execution, making nested RPC calls if necessary.
Once all processing is finished, the traces of the nested
RPC calls are added to the worker’s context (3) together
with an rpc-respond entry (4) and are included in the
RPC reply’s headers. Finally, when the result of the RPC
is received by the caller, an rpc-finish entry is recorded
(5). Initially, we propagated each worker’s context traces
as metadata during nested calls but we realized that (a)
it incurred a lot of overhead and (b) it did not offer
anything in terms of functionality.

When the original client that made the initial RPC
request receives a response, it parses the metadata from
the response headers and writes the metadata to a local
file. Each metadata entry contains 5 key-value pairs,
where each key is 11 bytes or fewer and each value
is 36 bytes or fewer (though may be longer if the server
hostname, the service name, or the RPC method name
is longer than 36 bytes). The five keys are the server
hostname, the service name, the RPC method name, the
current time, and a unique identifier associated with the
RPC.

To a system administrator, reading through a po-
tentially long and complicated metadata file would be
tedious and unhelpful. Thus, we wrote a Python script
that can parse the metadata file and render a simple and

Fig. 2: Call-tree PNG image generated from Straggler appli-
cation. The original application contained 10 leaf services. We
shortened it to 3 leaf services to make the tree easier to fit. The
total duration is the length of time between the timestamps in
the rpc-request and rpc-finish entries for a given RPC call. The
handle duration is the length of time between the timestamps
in the rpc-receive and rpc-respond entries (i.e. the amount of
time spent processing on the server).

easy-to-understand PNG image of the call tree that was
spawned by the original client’s initial request along with
the time each server spent processing a request. The PNG
image generated for the Straggler application is given in
Figure 2.

In the metadata file, each RPC has an rpc-request entry
and an rpc-finish entry, as shown in Figure 1. In step
(3) of Figure 1, metadata from any nested RPC calls is
inserted into the log. Thus, any entries between the rpc-
request entry and the rpc-finish entry for a given RPC
call a must correspond to nested RPC calls triggered by
a. The script uses this structure to determine parent-child
relationships for the generated tree.

It would also be possible to simply include the unique
ID of an RPC call’s parent in the metadata. However,
this is not necessary in order to recover parent-child
relationships, even for asynchronous RPC calls (since the
metadata structure is still preserved even in asynchronous
RPC calls). Thus, in order to avoid propagating redun-
dant information through the network and unnecessarily
complicating our framework design, we did not include
this information.

IV. EVALUATION

We evaluate our tracing system in a commodity laptop.
We determine tracing’s overhead by running some micro-
benchmarks, we use it to detect straggler services and
finally we profile a business application.

Fig. 3: Metadata overhead for a deep call stack. The orange
line is the time without the metadata. The blue line is the time
with the metadata.

A. Microbenchmarks

We will now consider two different microservice lay-
outs and discuss the metadata overhead of each.

First consider a service that consists of a deep call
stack. The client makes an RPC request to service 1,
which in turns makes a nested RPC request to service 2,
which in turns makes a nested RPC request to service 3,
and so on to some nonzero natural number n. The meta-
data overhead is shown in Figure 3. There is negligible
overhead for small to medium depths, but the overhead
becomes significant when the depth exceeds 15 levels.

The overhead becomes significant for a large number
of levels due to the growing amount of metadata that
needs to be propagated from the bottom level back to
the client. Perhaps this overhead could be decreased by
instead sending the metadata from each service directly
back to the client, and including pointers to this metadata
in the metadata that is sent from service to service back
up the chain.

Next consider a service that has wide fanout. The
client makes an RPC request to a base service, which
in turn makes nested RPC requests to a large number of
leaf nodes. The longest chain in this service is of length
2 (client → base service → leaf service). As shown in
Figure 4, there is nearly constant overhead regardless of
the fanout factor.

B. Straggler detection

Our tracing framework is helpful for detecting and
identifying straggling microservices, i.e. services that

Fig. 4: Metadata overhead for a large fanout. The orange line
is the time without the metadata. The blue line is the time
with the metadata.

perform significantly worse than their peers, in a large
system. Consider the setup shown in Figure 2. A client
makes an RPC request to a base service, which in turn
makes nested RPC requests to several leaf services. If
one of the leaf services is a straggler, the entire response
to the client will be delayed. The visual generated from
the tracing framework metadata can be used to determine
where the request spends the longest time in the system.
In Figure 2, the request is held up by service2.

C. Real world application

We use our tracing framework to profile a business
application provided by the Nameko framework. In this
scenario we have 3 Nameko services that implement
the business logic of an online store. The Gateway
is a service exposing an HTTP API to be used by
external clients e.g., web and bobile Apps. It coordinates
all incoming requests and composes responses based
on data from underlying domain services. The Orders
service is responsible for storing and managing orders
information and exposes a Nameko RPC API. This
service is using PostgreSQL database as its backend.
Finally, the Products service is responsible for storing
and managing product information and similar to Orders
exposes an RPC API used by other services. This service
has Redis, a popular key-value store as its data store. In
Figure 6 we see how much time is spent in each service
for different request types. We can use this information
to optimize such systems and eliminate bottlenecks.

Fig. 5: Microservices composing a business application.

Fig. 6: Execution time break down for different request types
in a business application.

V. RELATED WORK

There are many tools that monitor the performance
of individual nodes in a distributed system and provide
metrics to users and administrators. Some of them focus
on networking, either at the machine or the datacenter
level [5]. Magpie [3] is a toolchain that gathers and
processes events from operating system, middleware
and application-level instrumentation. It provides a total
ordering of events that can be used to produce a graph
of the paths followed through a system. Other solutions
such as Splunk [8] aggregate and index the logs of a
large-scale system. In this case it is possible to recreate
the path of tasks by following metadata such as IP
addresses and message IDs. However, such approaches
usually require a post-mortem or offline analysis of
the logs without being able to preemptively diagnose
problems. Next, we focus on the two systems that bear
the most similarity to our work.

1) X-Trace: Similar to Magpie, X-Trace [2] is an
integrated tracing framework that spans across different
layers of the system stack. Metadata are added to each
application-level request and are propagated to lower

levels while keeping a single request identifier. This
requires modifications to various network protocols so
that metadata are propagated and added during each
network action. X-Trace allows the separation of tracing
and monitoring domains which enables some data to be
delivered to the end-user and some to the ISP. The re-
quired modifications may have inhibited the widespread
adoption of X-Trace as they need to be approved by
various standards’ organizations and committees. Also,
with today’s high-level, stateless, and containerized ap-
plications, low-level tracing might not be necessary.
Cloud-hosted services that face performance issues can
migrate very quickly and easily to different physical
machines.

2) Pivot Tracing: The problem with all aforemen-
tioned systems is that the instrumentation is static. The
decision of which events are recorded and reported to the
users and administrators is made offline. Pivot Tracing
[1] gives users - at runtime - the ability to define
arbitrary metrics at various points of the system, and
select, filter, and group by events meaningful at other
parts of the system, even when crossing component or
machine boundaries. It has been implemented in Java
and evaluated in Hadoop pipelines consisting of vari-
ous applications such as HDFS, MapReduce, etc. Pivot
Tracing also proposes a ”happened before join” operator
that queries can use to group and filter events based on
events that causally precede them during execution. This
operator is implemented by using a metadata propagation
mechanism similar to the one we propose in this paper.

VI. CONCLUSION

As applications become increasingly more complex,
microservices adoption is spreading. This adoption has
raised challenges regarding monitoring, tracing and per-
formance analysis. In this paper, we try to address
these issues by implementing a tracing framework for
Nameko, a microservice framework built in Python. We
show that the overhead added to the request execution
time by tracing is minimal in most cases, and we present
several scenarios that highlight our profiler’s usefulness.
Our system is currently tracing only the break-down
of the execution time of each request it receives. Our
next steps would be to add other metadata to keep track
of the system’s state, e.g. number of in-flight requests.
We can also get ideas from the X-Trace and Pivot
Tracing papers. It should be simple to add dynamic
instrumentation since we are using Python, an interpreted
language. We can also implement a metadata-collecting
server used by system administrators instead of just

sending all data back to the client. Lastly, we should
add an authentication mechanism to ensure that clients
are authorized to receive metadata from the system, to
ensure that untrusted clients aren’t given an unfettered
view (through the metadata) of the private network that
the system runs on.

VII. ACKNOWLEDGEMENT

We would like to thank Prof. Mazieres for teaching
a great class and his supervision and feedback on this
project.

REFERENCES

[1] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot
tracing: dynamic causal monitoring for distributed systems. In
Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP ’15). ACM, New York, NY, USA

[2] R. Fonseca, G. Porter, R. Katz, S. Shenker, and I. Stoica. X-
Trace: A Pervasive Network Tracing Framework. In NSDI 2007.

[3] Barham, P., Donnelly, A., Isaccs, R., and Mortier, R. Using
Magpie for Request Extraction and Workload Modeling. In Proc.
USENIX OSDI (2004)

[4] Hasselbring, W. and Steinacker, G. (2017) Microservice Architec-
tures for Scalability, Agility and Reliability in E-Commerce. In:
IEEE International Conference on Software Architecture 2017,
April 03-07, 2017, Gothenburg, Sweden.

[5] Hussain, A., Bartlett, G., Pryadkin, Y., Heidemann, J., Pa-
padopoulos, C., and Bannister, J. Experiences with a continuous
network tracing infrastructure. In Proc. MineNet ’05 (New York,
NY, USA, 2005), ACM Press.

[6] Slee, M., Agarwal, A., and Kwiatowski, M. Thrift: Scalable
Cross-Language Services Implementation. Tech. rep., Facebook,
Palo Alto, CA, USA, April 2007.

[7] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, B. Recht, Occupy the
cloud: Distributed Computing for the 99%, in ACM Symposium
on Cloud Computing, 2017

[8] Splunk, http://www.splunk.com
[9] Nameko, https://nameko.readthedocs.io
[10] Rabbit, https://www.rabbitmq.com
[11] Gizmo, https://github.com/NYTimes/gizmo
[12] Micro, https://micro.mu
[13] DropWizard, http://www.dropwizard.io
[14] Nginx Blog, https://www.nginx.com/blog/microservices-at-

netflix-architectural-best-practices

