
Practical Byzantine Fault Tolerance Consensus and A Simple Distributed Ledger Application
Hao Xu

Muyun Chen
Xin Li

Abstract
Along with cryptocurrencies become a great
success known to the world, how to deploy a
large scale, robust Byzantine Fault Tolerant
system turns into an interesting challenge in
the technical community. We as a group of
practitioners in distributed system are
implementing the core consensus used in the
distributed ledger – Practical Byzantine Fault
Tolerance (known as PBFT, in Liskov), and
designing a simple distributed ledger
application of simulating the peer-to-peer
transactions, in order to have a principle
understanding the PBFT protocol, and its
powerful strength to survive various software
errors and malicious attacks.

1. Introduction
The objective of Byzantine fault tolerance is to
be able to defend against Byzantine failures, in
which components of a system fail with
symptoms that prevent some components of
the system from reaching agreement among
themselves, where such agreement is needed
for the correct operation of the system.
Correctly functioning components of a
Byzantine fault tolerant system will be able to
provide the system's service, assuming there
are not too many faulty components.
The application basically simulates the account
transactions (deposit, withdraw, move, etc) of
the bank system, which is distributed with data
replicated. During the process of the
simulation, there might encounter PBF causing
some nodes problem, but with the distributed

ledger technology, the non-fault nodes can
reach consensus to make the transaction
succeed and correct.
One example of BFT in use is bitcoin, a
peer-to-peer digital currency system. The
bitcoin network works in parallel to generate a
chain of Hashcash style proof-of-work. The
proof-of-work chain is the key to overcome
Byzantine failures and to reach a coherent
global view of the system state.

In our system, the application basically
simulates the account transactions (deposit,
withdraw, move, etc) of the bank system,
which is distributed with data replicated. To
simulate the Byzantine fault during the
process, some fundamental standups below are
giving us a

a. Any node can crash and recover at any
time.

b. Use UDP to communicate between
replicas, so the messages sent to each
node might be lost, duplicated or
disordered;

c. Client send request to replica to deposit
and retrieve money, and double check
the consistency between replicas.

d. Anytime with the 3f + 1 nodes, the
system is able to survive f fault nodes.

2. Background
Figure 1 shows a normal case operation
described in the paper. With four replicas (one
primary) the system is able to tolerate one
faulty node at a time.

https://en.wikipedia.org/wiki/Bitcoin

Figure 1.

Another important protocol is checkpoint. we
will describe more detail of checkpoint
endpoints in Section 3, here we only pinpoint
that the checkpoint and digest are important to
maintain data consistency in database.

3. Distributed Ledger

Basic: Build account database (including
account information, balance, etc.) and
replicated it into multiple nodes. Launch
replica process in each replica node and each
Process or some Processes share one database;
Distributed: a distributed ledger is a
peer-to-peer system, each node can do
transaction (communicate with other node)
asynchronously;
1.1) support command line input to start the

transaction in the client, eg:
get current balance for A
deposit $100 to A
move $100 from B to A
withdraw $200 from B

1.2) Information updated automatically
among different nodes. The consensus
among the working nodes is supported by
PBFT, and we also rely on database’s log
system to commit, redo and undo. After the
consensus and commit, the information

should be updated into each replica;
1.3) Simulate PBFT to cause some nodes failed

during the transaction. Since the messages
are transferred with UDP, which is not
reliable, the system can detect and process
UDP related issues to keep accordance. We
also manually shut down replica to
simulate fault process.

4. Implementation

4.1 PBFT Service
We reuse MIT BFT open source library [2],
and sfslite, a cryptography software tool [3] to
help design our PBFT service.
The libbyz library implement the PBFT
algorithm described in the paper. It provides
one client interface invoke, which sends the
request operation to replicas, and one main
server side interface execute, to receive and
execute the requested operations.
The mysql library provides the endpoints
connected to Mysql database, it has two
interface for both single-thread and
multi-thread execution.
The PBFTservice library provide the endpoint
to connect between PBFT distributed system
and databases. And it simulated some simple
transaction samples.
 The service system is shown in Figure 2.

Figure 2.

For each replica:
● wait infinitely for new transaction log.
● For the primary node, receive the input

transaction from client and multicast to
other replicas.

● Each replica will communicate with DB to
execute and commit with log read and
write one they receive the request.

● Communicate with other nodes with log
read and write.

4.2) AWS environment setup
We initiated five AWS instances for
simulating the distributed system. We will not
give too much detail about the environment.
But we are using network packet IO data to
evaluate the throughput of the system. This
can be optimized to use other AWS services to
have more accurate evaluation.

4.3) Database
Install MySql Workbench to create bank
account database, the table structure is like:

We implement connection pool in the replica
to communicate between each replica and
database, so the transaction is committed
within the connection pool managed by each
replica. Also MySql provide interfaces to
maintain and manage the log and data and
called by the replicas and clients.

5. Simulation

The main procedure involves three steps:
1) The client main procedure start transaction;
2) The replica main procedures start the pbft

phases;
3) The replica executes the request and

persists result into MySQL db in the
commit phase (after committed-local is
true).

We will present more specific details in the
Appendix Cases. You can have a better
understanding of how we simulate the
protocols.

6. Discussion
correctness

1. The system can run successfully with
at most 1 fault node, the remaining
replicas keep consistent.

2. The combination of view_change and
check_point enable the replicas to have
consistency data after a node recover
from the network partition (but it
cannot recover from crash, because we
don’t persist logs into disk, while we
do persist current state into db).
Basically the returned replica can
obtain missing messages from other
replicas.

performance
1. We run simulation in both read-only

mode and read-write mode. In the
read-write mode, there are 50% read
operations and 50% write executed in
random sequence. The read-only mode
is about 1.7 times faster than the
read-write mode, which is as expected

because of the read-only optimization in PBFT algorithms.

Table 1 Simulation result. No.iterations: the number of iteration, read: the number of read operation,
write: the number of write operation per simulation. time: the avg response time of a request.
view_change: how many view_change happened in the simulation (totally). network partition times:
manually turn down the aws network and then turn it on.

No. iterations read write time(ms)/request view_change network partition times

1000 1000 0 1.34 0 0

1000 500 500 2.31 3 0

5000 2500 2500 2.56 5 1

10000 5000 5000 2.35 4 2

Table 1.

2. While restart the fault server the
operation slow down dramatically. We
assume it is because after the replica
comes back to network, there are more
communications between replicas and
clients to resume lost messages, which
will consume more times.

7. Improvement
An interesting implementation of PBFT is the
peer-to-peer transaction system. For instance,
some of the blockchain techniques are using
the Proof-of-work based on the PBFT
algorithm, which would be an future
development of our system.

8. Conclusion and Acknowledgement

The main goal of the project is to get all of us
more familiar with the PBFT protocols. Even
though the algorithm is published about 20
years ago, we can still find its significant
influence over the technology world. We
started from implementing the algorithm,
integrating open source tools, and then
proceeded to simulating the transaction and
distributing it to databases. Finally now we
have better understanding of the PBFT not
only its protocol, but also its implement. Even
the simulation is simple and may contain flaws
while handling complicated cases, but it is
enough to maintain as a study case, which can
be scale up to larger systems, and can be
further designed to peer-to-peer transaction
system.

9. Reference

[1] Castro, Miguel, and Barbara Liskov. "Practical Byzantine fault tolerance." OSDI. Vol. 99. 1999.
[2] Programming Methodology Group, MIT, http://www.pmg.csail.mit.edu/bft/
[3] Sfslite, https://github.com/OkCupid/sfslite/wiki
[4] Source code: https://github.com/cmuhao/CS244b_final_project

http://www.pmg.csail.mit.edu/bft/
https://github.com/cmuhao/CS244b_final_project

Appendix

1) Experiment 1: write one and read, which means replicas show the specified one customer’s balance related

information after it wirted.
Request from client: deposit A 100, get A
Result from replicas:

2) Experiment 2: 1000, 5000, and 10000 iterations, random deposit and withdrawal.

Result from replicas:

(1000 iterations)

(10000 iterations)

3) Experiment 3: write some and read, which means replicas show the specified customers’ balance related

information after they writed.
Request from client: deposit A 100, get A, deposit B 200, get B, withdraw C 100, get C
Result from replicas:

