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1 Introduction 
This project is an implementation of the 
paper Viewstamped Replication Revisited 
(Barbara Liskov and James Cowling). The 
focus of the project is the naive 
implementation (Section 4 in the Liskov 
paper) without optimizations (Section 5 and 
6) in order to explore the limitations of the 
algorithm and to understand the design 
choices for the proposed optimizations.  
 
On a high level, the system comprises of a 
primary that accepts and executes client 
requests, and backups that replicate the 
primary states. The algorithm ensures 
consistency by guaranteeing that the state 
of the service is always replicated on at 
least f+1 replicas, and the service tolerates 
up to f byzantine failures. Even though 
Viewstamped Replication does not 
guarantee availability, the system performs 
view changes to make sure the system 
proceeds upon failure.  
 
To keep the implementation simple and 
extensible for future development, we 
implemented the “service code” (Figure 1) 
as an echo service that simply outputs the 
same string in the client request. However, 
we designed an extensible RPC upon 
which more complicated service code can 
be added. Our language of choice was Go 
because it is simple and non-verbose, 
provides many useful libraries, and, most 

importantly, has an excellent multithreading 
model.  
 
The remainder of the report is organized as 
follows. Section 2 lays out the architecture 
of each replica and explains the reasoning 
behind our decisions. Sections 3 and 4 
describe how the View Change and 
Recovery protocols are implemented, 
respectively. Section 5 adds further details 
about code design choices that do not fit 
neatly into prior sections. Section 6 
discusses some interesting results we 
observed from our system, and we 
conclude in Section 7. 

2 Architecture 
The two main components are the primary 
and backup modules. The primary (Figure 
1) exposes an RPC service to the client and 
executes client requests, and backups 
(Figure 2) synchronize with the primary and 
initiate view changes when necessary. In 
the figures, circles represent ongoing 
thread(s), rectangles represent 
communication and synchronization across 
threads (implemented using Go channels), 
triangles represent in-memory storage, and 
arrows represent dataflows.  

Primary 
When the primary isn’t faulty and all 
participating replicas are in the same view, 
the system runs in normal phase. Each step 



of Section 4.1 in the paper is followed 
exactly, but there are certain ideas we 
added ourselves. In the normal phase, the 
primary node exposes an RPC server that 
listens on client requests, which are pushed 
to the Incoming Requests Queue (IRQ) - a 
buffered Go channel, to decouple the 
implementation of the RPC service and the 
primary logic and prevent blocking. The 
design allows for both linearizable 
operations and FIFO client order by 
implementing a per-client IRQ (each client’s 
requests will be executed in order, but 
requests from different clients are executed 
in parallel). This makes sure clients do not 
experience much delay. However, for 
simplicity, we only implemented linearizable 
writes for all the incoming requests (all 
requests from different clients will be 
pushed to the same IRQ). 
 
The “primary” service processes requests 
from the IRQ, writes to log and client table, 
and sends Prepare messages to backups. 
After a primary receives at least f 
PrepareOk messages from backups, it 
executes the service code and updates the 
client table with the result of the operation, 
before it sends the reply to the client. The 
underlying service code currently only 
returns the same message as the message 
in the request, but it was made extensible 
so that more meaningful operations can be 
added later. 
 
 

 
Figure 1: Primary server layout. 

Backup 
The Backup has a very similar design to the 
primary, with the main difference being the 
RPCs they send. After a backup receives 
Prepare messages from the current 
primary, it processes the request locally by 
writing to its operation log and client table, 
and upon success, replies to the primary 
with a PrepareOk message.  
 

 
Figure 2: Backup server layout. 

 

Client Table 
This is an in-memory key-value store that 
records the request number of the most 
recent request for each client, if the request 
has been executed, and the result of the 
request. As for implementation, we used 
go-cache (1), an in-memory key value store 
for Go. 

Operation Log 
This is in-memory append-only array for 
keeping track of operations. For simplicity, 
we implemented the operation log using a 
Go array; however, improvements can be 
done to make data compressible or 
serializable so that it’s easy to send them 
other machines via RPCs. 



3 View Change Protocol 
The design of the view changes follows the 
paper as closely possible; where details are 
left unspecified, we creatively figured out 
ways to make the system efficient. As 
shown in Figure 3, we implemented the 
protocol as a state machine (monitor 
module in the source code) in Go.  
 

 
Figure 3: State machine of transitions 

between phases 
 
View changes are initiated by backups. 
They monitor the primary and expect to 
hear from it regularly; when they do not, 
they time out and initiate a view change. 
The monitor module running on backups 
listens for messages on two Go channels: 
one channel for timeouts after no heartbeat 
messages from the primary, and another for 
view change messages 
(“StartViewChange”, “DoViewChange”, and 
“StartView”). If a backup times out waiting 
for heartbeat messages from the primary, it 
switches to “view-change-init” mode and 
starts sending “StartViewChange” 
messages to other replicas, and then 
switches to “view-change” mode. If a 
replica receives “StartViewChange” 

messages with proposed view numbers 
larger than the highest number it has 
received so far, it will switch to 
“view-change” mode and start advocating 
“StartViewChange” messages to other 
replicas with the highest view number. A 
replica starts sending “DoViewChange” 
messages to the new primary after it has 
received at least f “StartViewChange” 
messages from other replicas. If the new 
primary receives at least f “DoViewChange” 
messages, it will become the new primary 
and start sending “StartView” messages to 
other replicas. When a backup receives 
“StartView” messages from the new 
primary, it will synchronize with the new 
primary and transition into a new view.   
 
Last but not the least, when a replica 
restarts after a crash, it enters the 
“recovery” mode, in which it sends 
“Recovery” messages to all other replicas 
and wait for f+1 “RecoveryResponse” 
messages, including one from the current 
primary. After it synchronizes with the new 
primary based on the information in the 
responses, it switches to backup mode and 
joins the new view.  
 
To allow a single binary to switch between 
its role as a primary or backup, we needed 
a way to cancel the current execution of 
operations on a given binary at any time. 
For this, we passed cancellable Go 
contexts to all the relevant functions and 
cancelled the contexts when a view change 
had begun. 
 
View Changes are particularly tricky 
because there are many timing issues with 
replicas talking to many other replicas, 
each sending different types of messages 
and keeping track of a lot of states. 



Because of network latency, messages 
from different views can be sent to replicas 
at the same time, increasing the complexity 
of the system. Additionally, the various 
threads updating the same counters and 
flags required locking to prevent race 
conditions. This led to many subtle bugs 
that we noticed and fixed, often requiring 
small design changes. For example, 
currently there is a bug in which locking on 
a global variable can result in a buffered Go 
channel not being flushed, which blocks the 
primary from sending any messages to 
other replicas. Better test coverage for the 
system is required to find out more subtle 
race conditions they system can 
experience. 
 
We also made sure that if node cannot 
connect to another node, it will retry and 
then stop trying rather than failing itself and 
causing a domino effect.  
 
It is also important for the client to know 
who the primary is at all times (not just at 
startup) so that it knows who to connect to. 
If a view change occurs, the old primary, 
who the client is still communicating with, 
responds to the RPC indicating who the 
new primary is and the client can 
seamlessly dial the new primary. 
Additionally, if communication with the 
primary fails, the client will keep retrying. 
 

4 Recovery 
When a replica recovers after a crash it 
must first learn about the state of the world 
before it participates in the request 
processing and view changes.  
 

To distinguish between a replica starting up 
for the first time and a recovering replica, 
we write a file to disk every time a node 
starts up. If the node exits normally, it 
deletes the file, and when a node restarts 
after a crash, it sees the file previously 
written that is not deleted yet, an indicator 
as to whether the replica has crashed 
before.  
 
When a replica starts up after a crash, it 
sets itself to recovery mode and calls the 
Recovery RPC. Once it receives f+1 
RecoveryResponses, including one from 
the primary, it updates it log using the state 
from the primary and returns to normal 
phase. 

5 Code Design 
The code was laid out in a way that logically 
follows from the architecture and follows Go 
conventions. 
 
The entry point to any Go program is 
main.go. This runs monitor.go, which 
starts the binary in a given mode (primary, 
backup, or client) and switches to other 
modes on certain conditions as described in 
Section 3. The modes, ids and ports of each 
replica is specified in replicas.csv, which 
can be changed to make it easy to scale the 
number of replicas. 
 
The primary code is implemented in 
primary.go. As a primary, the binary 
initializes an HTTPServer that the client will 
connect to and also connects to all the 
backup replicas. It processes incoming 
requests from the IRQ and synchronize with 
the backups. The backup code is 
implemented in backup.go, which 
implements an HTTPServer to 



communicate with the primary. The 
remaining logic is self-explanatory, including 
oplog.go, which implements the operation 
log, table.go, which implements the client 
table, the rpc module, which describes the 
RPC protocols, recovery.go, which 
performs a recovery, and globals.go and 
flags.go, which define the information 
shared between modes on a replica.  

6 Experiments and Results 
We measured the performance of the 
system under various conditions. Those 
experiments were performed on a Macbook 
Air 13-inch, with nodes running in separate 
processes. 
 
The first experiment we performed was to 
see how transaction time changed as a 
function of the number of nodes running VR 
(Figure 4). The conditions were  

● There is only one client and the 
client sends requests at a rate at 2 
QPS  

● The size of the primary Incoming 
Request Queue (IRQ) is 5, which 
means that the client can queue up 
to 5 incoming requests until it does 
not accept client requests anymore 

We saw an increase in the amount of time it 
took a client to get a response as the 
number of nodes grew, likely because the 
number of nodes the primary had to wait on 
for quorum increased. Additionally, as these 
experiments were running on a single 
machine, there was likely a performance hit 
for increasing the number of running 
processes. Also note that over time, we do 
not see any significant increase in 
transaction time. This is likely due to the fact 
that the number of messages and size of 
messages do not change along with time. 

More experiments can be done to explore 
the maximum size of messages and the 
minimum size of the primary IRQ before the 
system becomes unavailable. 
 
We also considered how the time for a view 
change varied as the number of client 
requests grew. The conditions of this 
experiment were 

● A view times out after 5s 
● The client sends 50 requests per 

view at a rate of 10 QPS 
Over time, as the client sends more 
messages, the size of the operation logs 
maintained by each replicas grows. This 
means that when a view change or 
recovery happen, there is a constantly 
growing amount of data to exchange, 
which increases latency of the system. 
Despite our concurrency optimizations, 
there are places in the data path that 
require blocking until processing is 
complete, and so this behavior is 
unavoidable without additional 
optimizations (mentioned at the end of the 
Liskov paper). More experiments can be 
done to explore the tradeoffs between the 
size of the operation logs and the number 
of additional messages to be exchanged if 
the optimizations mentioned in the Liskov 
paper were implemented.  
 
Last but not the least, the experiments 
mentioned above can be performed on 
multiple physical machines in a network to 
produce more realistic results. 
 
 



 
Figure 4: Transaction time as # of 

replicas change. 

 
Figure 5: View change time as client 

requests increase. 

7 Conclusions 
There are many ideas the paper proposes 
that would useful features or improvements 
to the protocol. For example, an important 
feature would be to add the reconfiguration 
protocol that specifies how the replica 
group can change through addition or 
removal of nodes (Section 7). There are 
also many optimizations the paper 
proposes in Section 6, such as using 
witnesses to supplement the backups and 
batching requests to increase throughput 
during heavy load. 
 
Beyond the ideas suggested, it would be 
very interesting to implement a service such 
as Chubby on top of this system. Ideally, 
we could run this VR implementation 
across multiple replicas, create a 
higher-level application running on top, and 
perform experiments measuring its 
performance more rigorously. 
 

While the paper provided a clear and 
simple framework to follow, there are many 
implementation choices we came up with 
(e.g. how to indicate to client who the new 
primary was after a view change). We found 
that focused pair programming was the 
most effective way to avoid the many of the 
traps that are part of building such a 
complex protocol. Specifically, there were 
many edge cases to consider (e.g. what 
conditions may cause our view change to 
malfunction) and multi-threading pitfalls to 
be aware of (e.g. locking functions that 
could disrupt another thread, without 
causing a deadlock). 
 
This project required a thorough 
understanding of the VR protocol and a 
meticulously thought-out design. By 
carefully reading the paper, taking 
advantage of Go’s strengths, and preferring 
simplicity to complexity, we were able to 
build a working, robust implementation of 
the VR protocol that is extensible to 
support new applications. Overall, working 
on this project was an excellent learning 
experience that allowed us to deeply 
understand the viewstamped replication 
protocol. 
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