
Viewstamped Replication Revisited and
Implemented

Li Li (lili1008@stanford.edu), Sidharth Goel (sgoel2@stanford.edu)

1 Introduction
This project is an implementation of the
paper Viewstamped Replication Revisited
(Barbara Liskov and James Cowling). The
focus of the project is the naive
implementation (Section 4 in the Liskov
paper) without optimizations (Section 5 and
6) in order to explore the limitations of the
algorithm and to understand the design
choices for the proposed optimizations.

On a high level, the system comprises of a
primary that accepts and executes client
requests, and backups that replicate the
primary states. The algorithm ensures
consistency by guaranteeing that the state
of the service is always replicated on at
least f+1 replicas, and the service tolerates
up to f byzantine failures. Even though
Viewstamped Replication does not
guarantee availability, the system performs
view changes to make sure the system
proceeds upon failure.

To keep the implementation simple and
extensible for future development, we
implemented the “service code” (Figure 1)
as an echo service that simply outputs the
same string in the client request. However,
we designed an extensible RPC upon
which more complicated service code can
be added. Our language of choice was Go
because it is simple and non-verbose,
provides many useful libraries, and, most

importantly, has an excellent multithreading
model.

The remainder of the report is organized as
follows. Section 2 lays out the architecture
of each replica and explains the reasoning
behind our decisions. Sections 3 and 4
describe how the View Change and
Recovery protocols are implemented,
respectively. Section 5 adds further details
about code design choices that do not fit
neatly into prior sections. Section 6
discusses some interesting results we
observed from our system, and we
conclude in Section 7.

2 Architecture
The two main components are the primary
and backup modules. The primary (Figure
1) exposes an RPC service to the client and
executes client requests, and backups
(Figure 2) synchronize with the primary and
initiate view changes when necessary. In
the figures, circles represent ongoing
thread(s), rectangles represent
communication and synchronization across
threads (implemented using Go channels),
triangles represent in-memory storage, and
arrows represent dataflows.

Primary
When the primary isn’t faulty and all
participating replicas are in the same view,
the system runs in normal phase. Each step

of Section 4.1 in the paper is followed
exactly, but there are certain ideas we
added ourselves. In the normal phase, the
primary node exposes an RPC server that
listens on client requests, which are pushed
to the Incoming Requests Queue (IRQ) - a
buffered Go channel, to decouple the
implementation of the RPC service and the
primary logic and prevent blocking. The
design allows for both linearizable
operations and FIFO client order by
implementing a per-client IRQ (each client’s
requests will be executed in order, but
requests from different clients are executed
in parallel). This makes sure clients do not
experience much delay. However, for
simplicity, we only implemented linearizable
writes for all the incoming requests (all
requests from different clients will be
pushed to the same IRQ).

The “primary” service processes requests
from the IRQ, writes to log and client table,
and sends Prepare messages to backups.
After a primary receives at least f
PrepareOk messages from backups, it
executes the service code and updates the
client table with the result of the operation,
before it sends the reply to the client. The
underlying service code currently only
returns the same message as the message
in the request, but it was made extensible
so that more meaningful operations can be
added later.

Figure 1: Primary server layout.

Backup
The Backup has a very similar design to the
primary, with the main difference being the
RPCs they send. After a backup receives
Prepare messages from the current
primary, it processes the request locally by
writing to its operation log and client table,
and upon success, replies to the primary
with a PrepareOk message.

Figure 2: Backup server layout.

Client Table
This is an in-memory key-value store that
records the request number of the most
recent request for each client, if the request
has been executed, and the result of the
request. As for implementation, we used
go-cache (1), an in-memory key value store
for Go.

Operation Log
This is in-memory append-only array for
keeping track of operations. For simplicity,
we implemented the operation log using a
Go array; however, improvements can be
done to make data compressible or
serializable so that it’s easy to send them
other machines via RPCs.

3 View Change Protocol
The design of the view changes follows the
paper as closely possible; where details are
left unspecified, we creatively figured out
ways to make the system efficient. As
shown in Figure 3, we implemented the
protocol as a state machine (monitor
module in the source code) in Go.

Figure 3: State machine of transitions

between phases

View changes are initiated by backups.
They monitor the primary and expect to
hear from it regularly; when they do not,
they time out and initiate a view change.
The monitor module running on backups
listens for messages on two Go channels:
one channel for timeouts after no heartbeat
messages from the primary, and another for
view change messages
(“StartViewChange”, “DoViewChange”, and
“StartView”). If a backup times out waiting
for heartbeat messages from the primary, it
switches to “view-change-init” mode and
starts sending “StartViewChange”
messages to other replicas, and then
switches to “view-change” mode. If a
replica receives “StartViewChange”

messages with proposed view numbers
larger than the highest number it has
received so far, it will switch to
“view-change” mode and start advocating
“StartViewChange” messages to other
replicas with the highest view number. A
replica starts sending “DoViewChange”
messages to the new primary after it has
received at least f “StartViewChange”
messages from other replicas. If the new
primary receives at least f “DoViewChange”
messages, it will become the new primary
and start sending “StartView” messages to
other replicas. When a backup receives
“StartView” messages from the new
primary, it will synchronize with the new
primary and transition into a new view.

Last but not the least, when a replica
restarts after a crash, it enters the
“recovery” mode, in which it sends
“Recovery” messages to all other replicas
and wait for f+1 “RecoveryResponse”
messages, including one from the current
primary. After it synchronizes with the new
primary based on the information in the
responses, it switches to backup mode and
joins the new view.

To allow a single binary to switch between
its role as a primary or backup, we needed
a way to cancel the current execution of
operations on a given binary at any time.
For this, we passed cancellable Go
contexts to all the relevant functions and
cancelled the contexts when a view change
had begun.

View Changes are particularly tricky
because there are many timing issues with
replicas talking to many other replicas,
each sending different types of messages
and keeping track of a lot of states.

Because of network latency, messages
from different views can be sent to replicas
at the same time, increasing the complexity
of the system. Additionally, the various
threads updating the same counters and
flags required locking to prevent race
conditions. This led to many subtle bugs
that we noticed and fixed, often requiring
small design changes. For example,
currently there is a bug in which locking on
a global variable can result in a buffered Go
channel not being flushed, which blocks the
primary from sending any messages to
other replicas. Better test coverage for the
system is required to find out more subtle
race conditions they system can
experience.

We also made sure that if node cannot
connect to another node, it will retry and
then stop trying rather than failing itself and
causing a domino effect.

It is also important for the client to know
who the primary is at all times (not just at
startup) so that it knows who to connect to.
If a view change occurs, the old primary,
who the client is still communicating with,
responds to the RPC indicating who the
new primary is and the client can
seamlessly dial the new primary.
Additionally, if communication with the
primary fails, the client will keep retrying.

4 Recovery
When a replica recovers after a crash it
must first learn about the state of the world
before it participates in the request
processing and view changes.

To distinguish between a replica starting up
for the first time and a recovering replica,
we write a file to disk every time a node
starts up. If the node exits normally, it
deletes the file, and when a node restarts
after a crash, it sees the file previously
written that is not deleted yet, an indicator
as to whether the replica has crashed
before.

When a replica starts up after a crash, it
sets itself to recovery mode and calls the
Recovery RPC. Once it receives f+1
RecoveryResponses, including one from
the primary, it updates it log using the state
from the primary and returns to normal
phase.

5 Code Design
The code was laid out in a way that logically
follows from the architecture and follows Go
conventions.

The entry point to any Go program is
main.go. This runs monitor.go, which
starts the binary in a given mode (primary,
backup, or client) and switches to other
modes on certain conditions as described in
Section 3. The modes, ids and ports of each
replica is specified in replicas.csv, which
can be changed to make it easy to scale the
number of replicas.

The primary code is implemented in
primary.go. As a primary, the binary
initializes an HTTPServer that the client will
connect to and also connects to all the
backup replicas. It processes incoming
requests from the IRQ and synchronize with
the backups. The backup code is
implemented in backup.go, which
implements an HTTPServer to

communicate with the primary. The
remaining logic is self-explanatory, including
oplog.go, which implements the operation
log, table.go, which implements the client
table, the rpc module, which describes the
RPC protocols, recovery.go, which
performs a recovery, and globals.go and
flags.go, which define the information
shared between modes on a replica.

6 Experiments and Results
We measured the performance of the
system under various conditions. Those
experiments were performed on a Macbook
Air 13-inch, with nodes running in separate
processes.

The first experiment we performed was to
see how transaction time changed as a
function of the number of nodes running VR
(Figure 4). The conditions were

● There is only one client and the
client sends requests at a rate at 2
QPS

● The size of the primary Incoming
Request Queue (IRQ) is 5, which
means that the client can queue up
to 5 incoming requests until it does
not accept client requests anymore

We saw an increase in the amount of time it
took a client to get a response as the
number of nodes grew, likely because the
number of nodes the primary had to wait on
for quorum increased. Additionally, as these
experiments were running on a single
machine, there was likely a performance hit
for increasing the number of running
processes. Also note that over time, we do
not see any significant increase in
transaction time. This is likely due to the fact
that the number of messages and size of
messages do not change along with time.

More experiments can be done to explore
the maximum size of messages and the
minimum size of the primary IRQ before the
system becomes unavailable.

We also considered how the time for a view
change varied as the number of client
requests grew. The conditions of this
experiment were

● A view times out after 5s
● The client sends 50 requests per

view at a rate of 10 QPS
Over time, as the client sends more
messages, the size of the operation logs
maintained by each replicas grows. This
means that when a view change or
recovery happen, there is a constantly
growing amount of data to exchange,
which increases latency of the system.
Despite our concurrency optimizations,
there are places in the data path that
require blocking until processing is
complete, and so this behavior is
unavoidable without additional
optimizations (mentioned at the end of the
Liskov paper). More experiments can be
done to explore the tradeoffs between the
size of the operation logs and the number
of additional messages to be exchanged if
the optimizations mentioned in the Liskov
paper were implemented.

Last but not the least, the experiments
mentioned above can be performed on
multiple physical machines in a network to
produce more realistic results.

Figure 4: Transaction time as # of

replicas change.

Figure 5: View change time as client

requests increase.

7 Conclusions
There are many ideas the paper proposes
that would useful features or improvements
to the protocol. For example, an important
feature would be to add the reconfiguration
protocol that specifies how the replica
group can change through addition or
removal of nodes (Section 7). There are
also many optimizations the paper
proposes in Section 6, such as using
witnesses to supplement the backups and
batching requests to increase throughput
during heavy load.

Beyond the ideas suggested, it would be
very interesting to implement a service such
as Chubby on top of this system. Ideally,
we could run this VR implementation
across multiple replicas, create a
higher-level application running on top, and
perform experiments measuring its
performance more rigorously.

While the paper provided a clear and
simple framework to follow, there are many
implementation choices we came up with
(e.g. how to indicate to client who the new
primary was after a view change). We found
that focused pair programming was the
most effective way to avoid the many of the
traps that are part of building such a
complex protocol. Specifically, there were
many edge cases to consider (e.g. what
conditions may cause our view change to
malfunction) and multi-threading pitfalls to
be aware of (e.g. locking functions that
could disrupt another thread, without
causing a deadlock).

This project required a thorough
understanding of the VR protocol and a
meticulously thought-out design. By
carefully reading the paper, taking
advantage of Go’s strengths, and preferring
simplicity to complexity, we were able to
build a working, robust implementation of
the VR protocol that is extensible to
support new applications. Overall, working
on this project was an excellent learning
experience that allowed us to deeply
understand the viewstamped replication
protocol.

8 References
1. Liskov, B., and Cowling, J.

Viewstamped replication revisited.
Tech. Rep.
MIT-CSAIL-TR-2012-021, MIT, July
2012.

2. "Viewstamped Replication Revisited
| the morning paper." 6 Mar. 2015,
https://blog.acolyer.org/2015/03/06/v
iewstamped-replication-revisited/.
Accessed 13 Dec. 2017.

https://blog.acolyer.org/2015/03/06/viewstamped-replication-revisited/
https://blog.acolyer.org/2015/03/06/viewstamped-replication-revisited/

