Tra - A file synchronizer
CS244b Fall 2017
Jennifer, Chih Wen, Lin
Kim Truong
Hemanth Kini

Overview

Tra is a file synchronization program. It provides a simple yet efficient algorithm to
perform file synchronization across an arbitrary number of replicas. It uses vector time pairs to
correctly synchronize any pair of replicas, seamlessly noting conflicts wherever they occur. Tra
can track changes to files and propagate those changes from replica to replica, using network
bandwidth that is proportional to the size of the changed files. In this project, we implemented a
command-line version of Tra with Python, using gRPC as our communication framework. The
implementation is designed to minimize the overhead of setting up any replicated file system.
The user can simply run a command line operation to sync any directories to another device as
long as there is a Tra server running on the device. In addition, we integrated an algorithm
similar to rsync to achieve lower network bandwidth when syncing small changes for large files.

Goals
Tra has the following 5 goals that we were able to achieve with our Tra implementation:

1. No synchronization order among replicas: We tested this by synchronizing among 3
replicas in an arbitrary order and verified that the results were consistent.

2. Conflict Detection Without False Positives: Conflicts can be falsely detected in such
scenarios as Figure 17 from the paper[1] using synchronization tools like Unison. We
have verified that our implementation does not falsely detect conflicts that scenario.

3. Zero Storage for File Deletion Metadata: We detect whether a file is new or has been
deleted with no extra storage costs by adding deletion notices in the parent metadata.

4. Bandwidth Consumption Proportional to Syncing Set

5. Partial Synchronization: Goals 4 and 5 are related and achieved in our Tra
implementation by returning “Do Nothing” to the client when a directory is already
up-to-date. The client expends bandwidth only on partially synchronized directories.

Design
Implementation

Our implementation of Tra is designed to be run as a simple command line tool without
setup overhead. A sync command can be run from any given directory to any replica as long as
the replica has a Tra server instance running. Tra only creates metadata to store sync state
when receiving a sync command (or loads previous metadata from disk using a filesystem
module.) It uses gRPC to handle serialization and network connections. This provides a
seamless way for any two Tra instances to communicate with each other - the user only needs
to provide the hostname and (optionally) a port, and gRPC will handle setting up the connection,

serializing and deserializing data, and calling appropriate stub routines. We use streaming
connections to handle uploads in order to improve performance.

Synchronization

The following diagram shows the control flow for a sync process. A clientSyncJob is
created when the program is started with a given directory to sync. The job creates or loads
traCores for each subdirectory and updates it against the file system. It recurses down the file
tree in a BFS pattern, sending over its vector time pairs through a sync RPC call for each
directory. If the corresponding traCore on the server replies COPY, it sends the vector time
pair for its files through another sync RPC and keeps recursing down the file tree. Else, if a
DO_NOTHING is received, the recursion will terminate. This allows us to achieve goals 4 and 5
by not wasting bandwidth on already up-to-date directories.

On the server side, a serverSyncJob will be created with a job id when the RPC
server receives a new syncRequest. The RPC server can theoretically serve multiple clients’
requests in the same time, as it loads separate requests in separate jobs. The
serverSyncJob will load or create the traCore for requested directories. The job can detect
missing files based on the assumption that the c1ientSyncJob will walk down the file tree in a
BFS pattern.

Figure 1: Tra Architecture Diagram

tra_run_sync(dirl) Sync(dirx)
| ServerSynclob2
l syncRequest,
Sync(1, dirl) (1, dir1) Sync(dir1)
ClientSvnclob. » > 3l ServerSynclobl
T SyncReply,
(1, dirl) l'
Y rec | | e
load /t . S St RPC 4 traCore
i ¥ traCore) server P
tra.pickle dump \ (dir1) / b / (dir1)
/" traCore, "\ [traCore. \ (tracore,)
i))\ (i) L

~ = ~~ - —

Vector Time Pair Syncing

Tra is designed around the concept of vector time pairs, which is comprised of a
modification and synchronization vector. Vector consists of dictionary entries { replica ID :
timestamp }. A modification from a certain replica would record an entry (or update it if the
replica’s entry already exists) with the replica’s ID followed by the timestamp at the time of the

modification. Similarly, a synchronization to a certain replica would record an entry with the
replica’s ID followed by the timestamp at the time of synchronization. The synchronization vector
is a superset of the modification vector with the extra synchronization information because the
modification vector by itself is insufficient to detect conflict without false positives.

According to the paper’s Figure 17, the following scenario in Figure 2 below with 3
replicas A, B, C where different shapes denote different versions of the file and a squiggly
arrows (~>) denote unidirectional sync from one replica to another would produce a false
positive conflict at sync time t=6. The conflict arises from having two different versions at B and
C at t=5 since the last sync. However, B’s version at t=5 is derived from C’s because C’s mod
vector is less than or equal to B’s sync vector. As a result, Tra would replace C’s version with
B’s without reporting conflict. Tra uses the same logic from Figure 9[1] to decide if two files are
created independently, derived from one another, or conflicts using vector time pairs.

Figure 2: Tra No False Positive Conflict and Conflict Resolution Propagation

1 2 3 4 5 6 7 8 9

A OO A A A O O K 3 = GCoy
— - , = Donothing
B) Ay L& _f‘x. i _,.fﬂ'“1 s AN _
. — e mm Conflict
C Wl [|:|= A O & O B mm Delete

Conflict Resolution

At t=6 in Figure 2, we introduced a conflict by modifying the file on A and on C and
syncing A to C. When a sync is run and the Tra server daemon notes the conflict, it asks to be
sent the client’s copy of the file. It then stores this file with the suffix
“.tra_conflict._ <REPLICA_ID>_<TIMESTAMP>'. This is akin to Dropbox, where conflicted files
are given a new filename. On Dropbox, users are forced to manually resolve conflicts by
updating and renaming the file they want to use and deleting all other conflicted versions of the
file. However, our implementation of Tra contains a conflict resolution script that the user can
run to automate this process. They only need to update the specific file that they want to keep,
and run the script using that copy of the file as an argument. The script automatically removes
all other conflicting copies of the file, and saves the resolution state to the traCore so that if
we sync this replica to other replicas, they also receive this conflict resolution. In Figure 2, we
resolved the conflict in favor of A. When A deletes the file at t=8, the change propagates to C at
t=9 without repeating the same conflict.

Creation & Deletion Metadata

When a file is synced over from a remote replica, Tra differentiates whether that file is
newly created on the remote replica, or has been already deleted on the local replica using the
file’s creation vector and the file’s directory’s sync vector.

Upon syncing, the Tra fs module detects that the file has been deleted if its metadata
exists without the corresponding file node in the filesystem. Tra creates a “deletion notice” by

adding (or updating the existing) entry with the local replica’s ID and the current timestamp in
the file’s parent’s sync vector. It percolates the notice to the file’s parent, who takes the max
vector of its children’s sync vectors along with the deletion notice and its own sync vector.
Similarly, the mod vector of the deleted file’s parent directory is updated by taking the max of its
child and its own mod vector because “[a]s far as synchronization is concerned, deletion is just
another kind of change.[1]” We update the deleted file’s parent directory’s mod vector so that
the same sync call does not re-sync using the parent’s old mod vector.

The original paper has a more detailed description of the logic behind creation and
deletion in the form of pseudocode in Figure 10.

Rsync-like File Streaming

To cut down on bandwidth and improve performance, we use an rsync-like algorithm to
propagate file changes from one replica to another for files larger than 4096 bytes. When the
sync algorithm returns a result asking the client to propagate changes to a file on the server, the
client queries the server for a rolling checksum table of its file. It then uses this table and
computes a rolling checksum over its local copy of the file. If a local block’s checksum matches
one already present on the remote host, it simply tells the server to copy that block to the
correct offset within the file; otherwise, it sends over the first byte of the block to the server, and
moves the block over by one byte to compute a new checksum and try again. Our
implementation uses the Adler-32 and MD5 checksums, just as rsync does.

Consistency Testing

To ensure basic functionalities, we replicated the figures from the original Tra paper[1]
and another one we found[2]. For example, in Figure 3[2] from section 3.4, we made sure
resolution state was saved by checking that the sync at t=4 reported no conflict when the
resolution favored Y. Otherwise, if Z was favored, we verified there was a conflict.

For deletion, we ran the same tests from Figure 4 (a)(b)[1] where DEL means file is
deleted. In Figure 4 below, our Tra implementation returns “Do Nothing” at t=4 when B ~> A
because B’s version is older than A’s deleted version. In Figure 5, a sync in the opposite
direction A ~> B at t=4 deletes the file on B. In Figure 6, A deletes and B changes results in a
conflict.

Figure 3 Figure 4 Figure 5 Figure 6
A B C A B A B A B

1 X 1 X 1 X 1 X
[\ A\ [I\

2 Y Z 2 X X 2 X X 2 X X
/o | | | | | |

3 W 2 3 DEL X 3 DEL X 3 DEL Y
\ I/ N |/

4 ? 4 DEL 4 DEL 4 CONFLICT

Performance Evaluation

To evaluate Tra, we aimed to evaluate its “real-world” performance and verify that it
satisfies the goal that runtime and network bandwidth is proportional to the size of the changed
set. We created a N-megabyte file tree and ran Tra on two laptops, connected with an iPhone
hotspot (802.11ac, >1Gbps). Each tree is constructed as a balanced binary tree of height log,N
with N leaf directories, each containing 256 four-kilobyte files with random binary contents.

The following figures show the runtime for syncing a full tree update and a partial update
(one directory changed). A partial update only updates files within one leaf node. We should see
the runtime of syncing a partial update being 1/N of that of a full update. Our implementation of
Tra is consistent with this result when the tree size is smaller than 32 MB. However, as tree
sizes increase, the overall runtime does not scale up linearly. This is due to the overhead from
serializing and deserializing for every sync command. For syncing up a partially updated 64 MB
tree, deserializing metadata takes approximately 110 seconds and serializing metadata takes
approximately 160 seconds. Since we populate all traCores and scan for any file updates
before syncing, the time for serializing and deserializing is linear with the size of the tree,
instead of the size of the change.

Figure 7: Runtime for Syncing N-Megabyte File Tree

1000 == one directory changed 2000

= full tree changed —— full tree changed
— X~ one directory changed

750

Time (sec)
time (s)

1 MB 2MB 4MB 8MB 16MB 32MB 64MB

64128 256 512 1024
Tree size tree size (N[B)
Our Tra Implementation Results The Paper’s Tra Implementation Results

There is a tradeoff between runtime and overhead for setting up replicated file systems.
We implemented Tra in a way that minimizes the setup overhead for end users - i.e. they do not
need to save to a particular directory, a la Dropbox. To achieve this, we design the daemon to
store metadata on disk, instead of in memory.

We also attempted to partially replicate Figure 13 from the original Tra paper -
comparing performance between our Tra implementation and rsync. The first test copied the
Linux 2.6.5 kernel’s source tree from one replica to another. The second test synced the
directories again. The third test changed a single file in a single directory and synced a third
time. Again, we ran Tra on two laptops connected via an 802.11ac iPhone hotspot.

Figure 8: Raw performance comparison between Tra and Rsync

Time (s)
>1000 Mb/s | copy nop change1
Tra 399.38 |4498.24 |2271.50
Rsync 16.3 1.98 2.66

Our Tra Implementation Results

Time (s)
copy nop changel
100 Mb/s
Tra 88.20 2.59 2.32
Rsync 3473 245 2.34
Unison 67.86 2.05 2.67
1000 Mby/s
Tra 61.14 1.69 4.67
Rsync 28.65 1.81 1.97
Unison 4147 1.82 1.52

The Paper’s Tra Implementation Results

The large performance deviations in Tra vs. Rsync are primarily due to the fact that
whenever our implementation receives a sync request, it needs to unpickle the traCore from
the directory corresponding to that request, check all subdirectories and files for modifications,
and flush back to disk once the request has been serviced. This is why no-op takes a
significantly longer time in our Tra implementation than rsync.

Future Work & Conclusion

There are also several ways we could improve upon this project. Firstly, our
implementation uses system time instead of logical clocks because system time is easier to
implement and debug. Logical clocks would have been a better solution because it would not
require replicas to have the same clock. Secondly, we store metadata by directly serializing
Python objects. In the future, we would like optimize both runtime and storage cost by storing
only vector-time pairs. In particular, we used a modification vector instead of a scalar because it
was simpler to implement. The storage cost for our implementation is therefore O(R*(D+F))
instead of O(R*D + F) from the paper, which implements this optimization. Lastly, we can
optimize our runtime by using more efficient metadata storage instead of using Python pickles.

In this project, we successfully implemented a file synchronizer with no lost updates
using vector time pairs. In particular, we achieved all the goals outlined above. We believe this
is a good prototype of a user-friendly command-line tool file synchronizer across multiple
replicas. The clear conflict semantics also allow users to select and resolve conflicts easily.

References

[1] http://publications.csail.mit.edu/tmp/MIT-CSAIL-TR-2005-014.pdf
[2] https://pdos.csail.mit.edu/archive/6.824-2004/papers/tra.pdf

https://pdos.csail.mit.edu/archive/6.824-2004/papers/tra.pdf

