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Overview 

Tra is a file synchronization program. It provides a simple yet efficient algorithm to 
perform file synchronization across an arbitrary number of replicas. It uses vector time pairs to 
correctly synchronize any pair of replicas, seamlessly noting conflicts wherever they occur. Tra 
can track changes to files and propagate those changes from replica to replica, using network 
bandwidth that is proportional to the size of the changed files. In this project, we implemented a 
command-line version of Tra with Python, using gRPC as our communication framework. The 
implementation is designed to minimize the overhead of setting up any replicated file system. 
The user can simply run a command line operation to sync any directories to another device as 
long as there is a Tra server running on the device. In addition, we integrated an algorithm 
similar to rsync to achieve lower network bandwidth when syncing small changes for large files. 
 
Goals 
Tra has the following 5 goals that we were able to achieve with our Tra implementation:  

1. No synchronization order among replicas: We tested this by synchronizing among 3 
replicas in an arbitrary order and verified that the results were consistent.  

2. Conflict Detection Without False Positives: Conflicts can be falsely detected in such 
scenarios as Figure 17 from the paper[1] using synchronization tools like Unison. We 
have verified that our implementation does not falsely detect conflicts that scenario.  

3. Zero Storage for File Deletion Metadata: We detect whether a file is new or has been 
deleted with no extra storage costs by adding deletion notices in the parent metadata.  

4. Bandwidth Consumption Proportional to Syncing Set 
5. Partial Synchronization: Goals 4 and 5 are related and achieved in our Tra 

implementation by returning “Do Nothing” to the client when a directory is already 
up-to-date. The client expends bandwidth only on partially synchronized directories. 

 

Design  
Implementation 

Our implementation of Tra is designed to be run as a simple command line tool without 
setup overhead. A sync command can be run from any given directory to any replica as long as 
the replica has a Tra server instance running. Tra only creates metadata to store sync state 
when receiving a sync command (or loads previous metadata from disk using a filesystem 
module.) It uses gRPC to handle serialization and network connections. This provides a 
seamless way for any two Tra instances to communicate with each other - the user only needs 
to provide the hostname and (optionally) a port, and gRPC will handle setting up the connection, 
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serializing and deserializing data, and calling appropriate stub routines. We use streaming 
connections to handle uploads in order to improve performance. 

 
Synchronization 

The following diagram shows the control flow for a sync process. A clientSyncJob  is 
created when the program is started with a given directory to sync. The job creates or loads 
traCore s for each subdirectory and updates it against the file system. It recurses down the file 
tree in a BFS pattern, sending over its vector time pairs through a sync RPC call for each 
directory. If the corresponding traCore  on the server replies COPY, it sends the vector time 
pair for its files through another sync RPC and keeps recursing down the file tree. Else, if a 
DO_NOTHING is received, the recursion will terminate. This allows us to achieve goals 4 and 5 
by not wasting bandwidth on already up-to-date directories. 

On the server side, a serverSyncJob  will be created with a job id when the RPC 
server receives a new syncRequest . The RPC server can theoretically serve multiple clients’ 
requests in the same time, as it loads separate requests in separate jobs. The 
serverSyncJob  will load or create the traCore  for requested directories. The job can detect 
missing files based on the assumption that the clientSyncJob  will walk down the file tree in a 
BFS pattern.  

 
Figure 1: Tra Architecture Diagram 

Vector Time Pair Syncing 
Tra is designed around the concept of vector time pairs, which is comprised of a 

modification and synchronization vector. Vector consists of dictionary entries { replica ID : 
timestamp }. A modification from a certain replica would record an entry (or update it if the 
replica’s entry already exists) with the replica’s ID followed by the timestamp at the time of the 
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modification. Similarly, a synchronization to a certain replica would record an entry with the 
replica’s ID followed by the timestamp at the time of synchronization. The synchronization vector 
is a superset of the modification vector with the extra synchronization information because the 
modification vector by itself is insufficient to detect conflict without false positives.  

According to the paper’s Figure 17, the following scenario in Figure 2 below with 3 
replicas A, B, C where different shapes denote different versions of the file and a squiggly 
arrows (~>) denote unidirectional sync from one replica to another would produce a false 
positive conflict at sync time t=6. The conflict arises from having two different versions at B and 
C at t=5 since the last sync. However, B’s version at t=5 is derived from C’s because C’s mod 
vector is less than or equal to B’s sync vector. As a result, Tra would replace C’s version with 
B’s without reporting conflict. Tra uses the same logic from Figure 9[1] to decide if two files are 
created independently, derived from one another, or conflicts using vector time pairs.  

 
Figure 2: Tra No False Positive Conflict and Conflict Resolution Propagation 

 
 

Conflict Resolution 
At t=6 in Figure 2, we introduced a conflict by modifying the file on A and on C and 

syncing A to C. When a sync is run and the Tra server daemon notes the conflict, it asks to be 
sent the client’s copy of the file. It then stores this file with the suffix 
‘.tra_conflict_<REPLICA_ID>_<TIMESTAMP>’. This is akin to Dropbox, where conflicted files 
are given a new filename. On Dropbox, users are forced to manually resolve conflicts by 
updating and renaming the file they want to use and deleting all other conflicted versions of the 
file. However, our implementation of Tra contains a conflict resolution script that the user can 
run to automate this process. They only need to update the specific file that they want to keep, 
and run the script using that copy of the file as an argument. The script automatically removes 
all other conflicting copies of the file, and saves the resolution state to the traCore so that if 
we sync this replica to other replicas, they also receive this conflict resolution. In Figure 2, we 
resolved the conflict in favor of A. When A deletes the file at t=8, the change propagates to C at 
t=9 without repeating the same conflict. 
 
Creation & Deletion Metadata 

When a file is synced over from a remote replica, Tra differentiates whether that file is 
newly created on the remote replica, or has been already deleted on the local replica using the 
file’s creation vector and the file’s directory’s sync vector.  

Upon syncing, the Tra fs module detects that the file has been deleted if its metadata 
exists without the corresponding file node in the filesystem. Tra creates a “deletion notice” by 
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adding (or updating the existing) entry with the local replica’s ID and the current timestamp in 
the file’s parent’s sync vector. It percolates the notice to the file’s parent, who takes the max 
vector of its children’s sync vectors along with the deletion notice and its own sync vector. 
Similarly, the mod vector of the deleted file’s parent directory is updated by taking the max of its 
child and its own mod vector because “[a]s far as synchronization is concerned, deletion is just 
another kind of change.[1]” We update the deleted file’s parent directory’s mod vector so that 
the same sync call does not re-sync using the parent’s old mod vector.  

The original paper has a more detailed description of the logic behind creation and 
deletion in the form of pseudocode in Figure 10.  
 
Rsync-like File Streaming 

To cut down on bandwidth and improve performance, we use an rsync-like algorithm to 
propagate file changes from one replica to another for files larger than 4096 bytes. When the 
sync algorithm returns a result asking the client to propagate changes to a file on the server, the 
client queries the server for a rolling checksum table of its file. It then uses this table and 
computes a rolling checksum over its local copy of the file. If a local block’s checksum matches 
one already present on the remote host, it simply tells the server to copy that block to the 
correct offset within the file; otherwise, it sends over the first byte of the block to the server, and 
moves the block over by one byte to compute a new checksum and try again. Our 
implementation uses the Adler-32 and MD5 checksums, just as rsync does. 
 
Consistency Testing 

To ensure basic functionalities, we replicated the figures from the original Tra paper[1] 
and another one we found[2]. For example, in Figure 3[2] from section 3.4, we made sure 
resolution state was saved by checking that the sync at t=4 reported no conflict when the 
resolution favored Y. Otherwise, if Z was favored, we verified there was a conflict. 

For deletion, we ran the same tests from Figure 4 (a)(b)[1] where DEL means file is 
deleted. In Figure 4 below, our Tra implementation returns “Do Nothing” at t=4 when B ~> A 
because B’s version is older than A’s deleted version. In Figure 5, a sync in the opposite 
direction A ~> B at t=4 deletes the file on B. In Figure 6, A deletes and B changes results in a 
conflict.  

 
Figure 3       Figure 4            Figure 5           Figure 6   

  A  B  C          A  B                A  B                A  B  

1    X          1  X                1  X                1  X 

     | \           |  \                |  \                |  \ 

2    Y  Z       2  X   X            2  X   X            2  X   X 

    / | /          |   |               |   |               |   | 

3  W  ?         3  DEL X            3  DEL X            3  DEL Y 

    \ |            |  /                 \  |               | / 

4     ?         4  DEL              4     DEL           4 CONFLICT 
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Performance Evaluation 

To evaluate Tra, we aimed to evaluate its “real-world” performance and verify that it 
satisfies the goal that runtime and network bandwidth is proportional to the size of the changed 
set. We created a N-megabyte file tree and ran Tra on two laptops, connected with an iPhone 
hotspot (802.11ac, >1Gbps). Each tree is constructed as a balanced binary tree of height log2N 
with N leaf directories, each containing 256 four-kilobyte files with random binary contents.  

The following figures show the runtime for syncing a full tree update and a partial update 
(one directory changed). A partial update only updates files within one leaf node. We should see 
the runtime of syncing a partial update being 1/N of that of a full update. Our implementation of 
Tra is consistent with this result when the tree size is smaller than 32 MB. However, as tree 
sizes increase, the overall runtime does not scale up linearly. This is due to the overhead from 
serializing and deserializing for every sync command. For syncing up a partially updated 64 MB 
tree, deserializing metadata takes approximately 110 seconds and serializing metadata takes 
approximately 160 seconds. Since we populate all traCores and scan for any file updates 
before syncing, the time for serializing and deserializing is linear with the size of the tree, 
instead of the size of the change.  

 
Figure 7: Runtime for Syncing N-Megabyte File Tree 

 
Our Tra Implementation Results 

 
The Paper’s Tra Implementation Results 

There is a tradeoff between runtime and overhead for setting up replicated file systems. 
We implemented Tra in a way that minimizes the setup overhead for end users - i.e. they do not 
need to save to a particular directory, a la Dropbox. To achieve this, we design the daemon to 
store metadata on disk, instead of in memory. 

We also attempted to partially replicate Figure 13 from the original Tra paper - 
comparing performance between our Tra implementation and rsync. The first test copied the 
Linux 2.6.5 kernel’s source tree from one replica to another. The second test synced the 
directories again. The third test changed a single file in a single directory and synced a third 
time. Again, we ran Tra on two laptops connected via an 802.11ac iPhone hotspot.  
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Figure 8: Raw performance comparison between Tra and Rsync 

 

Time (s) 

>1000 Mb/s  copy nop change1 

Tra 399.38  4498.24 2271.50 

Rsync 16.3  1.98 2.66 

 
Our Tra Implementation Results 

 
The Paper’s Tra Implementation Results 

The large performance deviations in Tra vs. Rsync are primarily due to the fact that 
whenever our implementation receives a sync request, it needs to unpickle the traCore from 
the directory corresponding to that request, check all subdirectories and files for modifications, 
and flush back to disk once the request has been serviced. This is why no-op takes a 
significantly longer time in our Tra implementation than rsync.  
 
Future Work & Conclusion 

There are also several ways we could improve upon this project. Firstly, our 
implementation uses system time instead of logical clocks because system time is easier to 
implement and debug. Logical clocks would have been a better solution because it would not 
require replicas to have the same clock. Secondly, we store metadata by directly serializing 
Python objects. In the future, we would like optimize both runtime and storage cost by storing 
only vector-time pairs. In particular, we used a modification vector instead of a scalar because it 
was simpler to implement. The storage cost for our implementation is therefore O(R*(D+F)) 
instead of O(R*D + F) from the paper, which implements this optimization. Lastly, we can 
optimize our runtime by using more efficient metadata storage instead of using Python pickles.  

In this project, we successfully implemented a file synchronizer with no lost updates 
using vector time pairs. In particular, we achieved all the goals outlined above. We believe this 
is a good prototype of a user-friendly command-line tool file synchronizer across multiple 
replicas. The clear conflict semantics also allow users to select and resolve conflicts easily.  
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