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Abstract—KeyNet is a distributed directory for secure
public key storage, modification, and lookup. Local consis-
tency, and therefore trust, is maintained at scale through
the use of byzantine fault tolerance. We discuss an emerg-
ing federated byzantine consensus protocol, Stellar, that
can enable open participation without sacrificing safety,
and present KeyNet’s design in that context. Our initial
implementation includes a PGP key store that reaches
consensus through the Practical Byzantine Fault Tolerance
protocol and can successfully be used to send encrypted
messages over a modern email client.

I. INTRODUCTION

Public interest in communication privacy has grown
significantly as a reaction to extensive industry data
collection practices, government surveillance, and high-
profile cybersecurity breaches. As a result, privacy efforts
have focused enabling secure data exchange through
the use of end-to-end encryption. Companies such as
WhatsApp and Signal have implemented instant messag-
ing clients on that principle [1], [2]. Yet no matter the
sophistication of the eventual communication channel,
asymmetric encryption requires the exchange of crypto-
graphic public keys upon initialization. While the public
nature of the key protects the security of the eventually
transmitted data, their direct exchange by the clients
is problematic because an adversary may capture and
modify the key en route. Fundamentally, we lack the
method to securely link an identity with the authorized
use of a key on a network.

Current approaches to key exchange security have
added mechanisms to ensure that, with high confidence,
keys sent from the expected source and not maliciously
modified are received by a client. The most common
Public Key Infrastructure (PKI) is comprised of a core
hierarchy of recognized Certificate Authorities (CAs)
who can sign certificates attesting to the validity of a
given public key. Commonly, some source of off-line
information is used to confirm a correspondence between
the key and the purported identity [3]. However, CAs

present an additional set of challenges in that they form
a centralized root of trust and a single point of failure.
Since an application must continually trust a CA’s public
key to accept certificates signed by it, any misbehaving
CA can propagate malicious public keys [4]. Worse, such
a CA may revoke a key with no prior notice, censoring
encrypted communication or replacing the key while
continuing to appear legitimate.

For those unwilling to cede control over their public
keys, the Web of Trust has been constructed alongside
the OpenPGP standard as a more decentralized PKI
model. Trust is distributed among each key, and other
users can attest to a key’s identity by signing it. As
more trusted users sign a new key, it is itself increasingly
trusted. While clearly more fault-tolerant than a CA-
based PKI, web of trust schemes fall prey to other similar
issues. Key verification must now take place entirely off
line, most likely requiring in-person communication at
a high cost. The lack of a single authority places the
onus for validating keys onto the clients when signing
or requesting a key and at any time, they may choose
to unilaterally weaken verification or abandon it entirely
for ease-of-use.

On the whole, current PKIs suffer from not effec-
tively enforcing the security and consistency of their
key directories, which allows unauthorized updates and
unsynchronized state to undermine the legitimacy of
the public keys they store. With that in mind, this
paper presents KeyNet, a distributed public key store that
achieves security through distributed consensus, even
in the face of byzantine failures. We allow for open
membership on an Internet scale, public auditing, and
the easy detection of malicious behavior with incontro-
vertible proof. KeyNet relies on recognized roots of trust
during key creation only; after a key is signed, authority
for all modifications reverts solely to the key owner.
Finally, the consistent directory state guaranteed under
consensus allows KeyNet to enforce a unique identity-
key mapping and serve local key requests directly from



the trusted state.

A. Byzantine Fault Tolerance (BFT)

Since we rely on our local key store to provide the
information required to process requests, our project
must maintain a consistent state relative to the other
nodes in the cluster. This is critical when one or more
nodes become compromised and begin to submit faulty
key creation or update operations. Therefore, KeyNet
clusters must not only survive system crashes or power
loss but byzantine failure cases. Practical Byzantine Fault
Tolerance (PBFT) is a well-known consensus algorithm
that achieves these safety and fault tolerance guarantees
[5]. In summary, the protocol serializes updates at a
round-robin primary node before committing; each node
communicates with cryptographically signed messages
to detect byzantine failures, and commits an operation
once a quorum of nodes agree to apply it. One drawback
to PBFT is its requirement for static membership, since
all nodes must be known before hand to guarantee lasting
consensus. However, we found PBFT to be useful in
developing our proof of concept for KeyNet, discussed
in Section V.

B. Federated Byzantine Agreement

An additional point of concern is that PBFT, given its
rigid membership, is not designed to scale, which makes
the protocol ill-suited for an Internet level system. In
order to enable open membership for any node willing
to join the network, we can run KeyNet on a Feder-
ated Byzantine Agreement System (FBAS) while safely
maintaining consistent state and byzantine fault tolerance
[6]. Each node is allowed to decide on its own dynamic
quorum slices representing other cluster participants it
trusts. If every well-behaved node has at least one
quorum slice that transitively intersects with all other
well-behaved participants, then the KeyNet cluster will
remain consistent. This property allows nodes to reach
consensus even when they have no direct knowledge of
all other nodes.

II. DESIGN GOALS

KeyNet’s potential use as a backbone for large-scale
public key infrastructure entails consideration of both
security and system architecture design goals.

A. Security

Non-equivocation No KeyNet node should externalize
conflicting key values for any entity, nor should the key
directory state ever diverge. Any failed set of key server
nodes exhibiting arbitrary or malicious behavior should

not affect the remaining nodes’ ability to safely replicate
the key directory. Note that such a (byzantine fault
tolerant) guarantee only holds under protocol-specific
conditions: PBFT can maintain safety when up to f
failures occur in a cluster of 3f + 1 nodes, while
an FBAS is tolerant to any number of faults under
which a quorum intersection of well-behaved nodes
exists. The point of externalization is also subject to
protocol-specific conditions: in the case of PBFT, the
client must receive f + 1 of the same response for the
value to be externalized.

Continuity Every directory update must be verified by
each node as a deterministic function of the current key
server state. For example, every key change must be
correctly signed by its owner, verified by the current
public key. Newly created keys must be signed first by
the domain authority for the proposed identity, then by
the owner. As a result, nodes may maintain trust in the
integrity of each key in the directory.

Auditability The system must allow any entity to monitor
updates as a full member of the cluster. In particular,
should any KeyNet node attempt to submit a modifica-
tion or deletion of a public key binding that it does not
own, every node will receive indisputable proof of the
malicious behavior: each operation that attempts to reach
consensus is cryptographically signed by its creator and
is authorized by the very key being modified.
B. Architecture

Open Membership Any key directory cluster with closed
membership would implicitly limit scalability and flex-
ibility in terms of defining trust on the client side.
Appropriately-verified entities should be allowed to
replicate the key directory, propose modifications or
updates, and participate directly in consensus. Further,
the system should scale as a decentralized network, with
no explicit controlling root of trust.

Compatibility KeyNet should be compatible with, and
develop off of, existing public key infrastructure. Rather
than begin with a clean directory, the system should be
able to initially accept strongly authenticated domain
administrators or certificate authorities. Additionally,
KeyNet nodes must support common PKI standards,
such as PGP or X.509 certificates.

III. SYSTEM DESIGN

Many applications implemented over consensus proto-
cols become inevitably tied to each other. As an example,



when first creating the KeyNet codebase, we cloned etcd-
raft [7], a popular key-value store implemented over a
full-featured version of the RAFT consensus protocol
[8]. We observed a large amount of coupling (both in
message types and bridging function calls); given that
we would expect to run KeyNet on a vastly differ-
ent consensus algorithm (FBAS) in practice than what
was used during this quarter’s development (PBFT), we
viewed maintaining a separation of concerns between
different components as an important requirement during
development.

A. Interface

Our primary client-side interface is a key-value store,
in which an arbitrary identity token maps to a matching
public key. Commonly, the identity token takes the form
of an email address, and in Section V we store a
committed PGP key for each individual email address.
In addition, we allow for four operations on a KeyNet
directory: Create, Lookup, Update, and Recover. Our
implementation currently implements every operation
except for Recover.

Create Submits a key creation request to the KeyNet
cluster, which must consist of an identity-public key pair.
The request should be signed by the authority controlling
the relevant email domain: the authority has the ability to
bootstrap its own users. While completing the consensus
protocol, each node should first verify that there are no
current public keys already assigned to the same identity.
If a duplicate exists, the operation can be aborted and
restarted as an Update. A KeyNet node should then
verify that the creation was authorized by the controlling
party for the email domain. If verification and the re-
mainder of the consensus completes successfully, the key
is added to the directory and available for reads. Finally,
it is important to note that during Create operations,
we must leverage existing PKI at each KeyNet node in
order to acquire the correct public keys corresponding to
domain authorities not present in the key directory (more
discussion can be found in subsection III.E).

Lookup Retrieves the matching public key from the
director for a given identity token (i.e. email address).
Since the BFT consensus algorithms ensure that every
node sees the same, eventually consistent key directory
state, reads can be performed entirely from the local copy
by a KeyNet node. Remote client behavior to ensure that
it received the correct public key on Lookups is discussed
further in Section V.

Update Changes the public key bound to a specific
identity. Such requests must be signed by the owner’s
old private key and verified by each node with the soon-
to-be replaced public key. Critically, this does not give
the domain authority the ability to change a public key
binding it previously signed off on, as a CA would in
a classic PKI scheme. While this also prevents revoking
all keys for a particular domain in the case of a compro-
mised domain authority, even a malicious node could do
no worse than create spurious additional keys for emails
that are not already in the directory.

Recover A major downside to the semantics of the
Update call is that if a node or client were to lose its
private key, they would be unable to update their public
key in the directory and in the case of a node, unable to
communicate with the remainder of the KeyNet cluster.
The Recover operation allows for preemptive preparation
in the event of key loss: a KeyNet node or client could
encrypt their private key before backing it up in a secure
location and spreading the decryption shares among a
set of trusted KeyNet nodes. In the event of a key loss,
the node can contact each node out-of-band, prove its
identity, and receive enough decryption shares to recover
its private key.
B. KeyNet Node

The KeyNet node is the core of our distributed key
directory and implements the application-specific logic.
It orchestrates three components:

1) Client Handler: handles incoming client requests
to the interface described above, either locally if a
full node in an FBAS, or over an HTTP(S) handler
in a setup like PBFT with remote clients.

2) Key Store: the local, raw key-value storage for
KeyNet’s public key bindings.

3) Consensus Node: the implementation of the direc-
tory’s distributed consensus protocol, which pro-
vides the KeyNet node with committed operations
to apply.

Each component is independent and can be replaced
without harming the raw functionality of the system.
However, replacing the FBAS or PBFT implementation
with RAFT, for example, would create critical flaws in
the system when experiencing byzantine failure.

C. Consensus Node

The consensus node separates the high-level function-
ality of the key directory from the implementation of
the BFT protocol using a simple Propose/Committed
interface on opaque string operations. This allows the



consensus client to embed information such as operation
type, request signature, etc. without bleeding types into
the consensus implementation or vice versa.

D. Client

The KeyNet client performs key lookup, creation, and
update. In the PBFT protocol, the client must receive
f + 1 of the same response from the cluster in order
to confirm the result of any operation. Key creation
must be signed by a domain authority and key updates
must be signed by the previous key; if these conditions
are not met, the update is rejected by all non-faulty
nodes. The leader of the PBFT cluster must assign a
sequence number and submit the request; all non-leader
nodes forward the client request to the leader. In order to
deduplicate requests, the client sends a unique timestamp
with each request submitted.

E. Bootstrapping Authority

In certain cases, it is not possible to verify key
creation based solely on the contents of KeyNet. For
example, a Create request with a public key for
paul@example.com when the domain authority for
example.com is not registered with the system is
difficult for the KeyNet nodes to verify. Thus, we fall
back onto existing PKI like a CA certificate chain to
bootstrap authorities. Theoretically, this means that we
may always be dependent on an exterior root of trust
during the Create phase. We believe this is not a fatal
scenario: even in the case of a compromised CA chain,
modifications to the key directory are limited to adding
new keys, as previously-issued keys cannot be modified
by the domain authority; thus, only emails that have
not previously inserted into KeyNet are vulnerable to a
compromised domain authority. The amount of partici-
pation in the KeyNet network trades off directly with the
reliance on previously-existing PKI for key verification.
Finally, since key updates are heavily restricted, the basis
for trust on all future updates to a public key mapping
is the distributed directory itself.

IV. STELLAR CONSENSUS PROTOCOL (SCP)

To make use of an FBAS for consensus, a protocol
implementation is necessary, one of which is the Stellar
Consensus Protocol [6]. The resulting architecture will
look slightly different from the one presented in Section
V – in Stellar, every client node can choose to participate
as a full member of the consensus algorithm (the exact
position in the network depends on the chosen quorum
slices) and keep a copy of the directory state. Every

instance of the Stellar protocol runs in two phases:
a federated nomination phase where nodes vote and
converge on a shared set of operations to apply, and a
balloting phase where the nodes are voting on which
operation set to externalize. The nomination protocol
may continue to run during the balloting phase and
update the operations being balloted. Invalid operations,
such as attempting to update a key without holding the
appropriate private key, can be detected using the local
directory state and removed prior to any nomination
occurring. Once a quorum has voted to externalize a
set of operations, they can immediately be applied to
the key directory and made visible to the user. Because
operations are applied in small groups for each slot in the
log during successive iterations of nomination and bal-
loting protocols, it is easy for Stellar nodes to maintain
a transaction history that can be used when malicious
behavior or equivocation is detected to evaluate the root
cause.

V. IMPLEMENTATION

Over the course of the quarter, we implemented a
smaller scale version of the full KeyNet system in ap-
proximately 3000 lines of Go and 300 lines of Javascript.
Among others, this included an extensive PBFT im-
plementation, a key directory store, and a modified
Chrome extension for PGP email encryption integration.
We hosted a cluster of up to 10 PBFT nodes, as well
as a mock authority server, on separate Google Cloud
instances to better examine performance across network
links.

Fig. 1. Our KeyNet implementation.

A. Practical Byzantine Fault Tolerant Protocol

The implementation of the underlying protocol follows
the design from the original PBFT paper closely, with
a couple of practical additions inspired by Raft that do



not compromise the safety and consistency guarantees
of PBFT’s design.

During regular operation, the cluster follows a stan-
dard three-phase commit protocol. To perform an update,
the client broadcasts a signed request to the entire cluster.
The leader, or primary, of the cluster determines the
ordering of all client requests and begins the protocol. If
a node notices that the leader does not begin the three-
phase commit within a given timeout, it initiates a ”view-
change”, which round-robins the leader. A new leader is
deterministically chosen and the nodes consolidate their
state at the beginning of the new view. After a certain
number of commits, a checkpoint is initiated, during
which all the nodes snapshot their state.

We implemented two additions to protect against
regular faults: 1) heartbeats and 2) recovery. (1) If
the primary simply goes down, the network does not
discover it until the next client request. To pro-actively
catch these faults, we have the primary send periodic
empty pre-prepare messages, to the cluster. If a node
misses several heartbeats, it initiates a view change. (2)
The original PBFT paper is vague in how it conducts
node recovery, punting it until the next view change.
Our nodes piggyback state information onto heartbeats
and heartbeat acks. Non-primary nodes piggyback their
most recent commit timestamp onto the ack. If they are
behind, the primary, on the next heartbeat, responds with
information about the next closest sequence number,
either the last checkpoint (and a proof of 2f+1 uniquely
signed checkpoint messages), or a committed entry (and
a proof of 2f +1 uniquely signed commit messages). If
the proof is correct, then the node applies it to its log.

Finally, to perform a lookup, the client broadcasts their
query to the cluster and waits for f+1 matching replies.

B. Mock Authority Server

Since KeyNet relies on existing PKI to bootstrap its
root of trust, we have a ”mock” authority with valid
certificates. The authority signs off on all public key
bindings for names under their domain.

C. Encrypted Email

Our current implementation of the KeyNet client is
a modification of the open source Javascript extension,
Mailvelope. Since HTTP requests must be initiated by
the client, KeyNet PBFT requests from the extension
must be broadcast to every node.

1) Key Management: The KeyNet browser extension
provides the ability to manage multiple keys tied to
different email addresses. Each email is currently

limited to one key, but KeyNet can be extended
to support multiple keys per email in the future.
The keys are password protected, though unlocked
keys can be kept in memory for a short period for
convenience.

2) Key Creation: A key creation request is constructed
with the public key, sent to the domain authority
for signing, then to KeyNet for insertion.

3) Key Update: Key update follows the same process
as creation with a signature from the previous key
instead of from the domain authority.

4) Key Lookup and Email Encryption: The PGP pub-
lic keys of the email recipient are looked up by
email address on KeyNet and the email encrypted
for those keys.

5) Email Decryption: A received email can be de-
crypted by the extension if the private key it was
encrypted for is present in the browser.

VI. EVALUATION

A. Performance

We performed several experiments to show the viabil-
ity of the KeyNet system. KeyNet was deployed onto 10
Google Cloud instances, 4 in us-west, 3 in us-east,
and 3 in us-central zones. The performance of our
system is reasonable for an unoptimized, vanilla PBFT
implementation (Fig 2), and performs at-par with exist-
ing key server pools. This is sufficient for our use case
since key databases are very read-heavy; most receive
only a couple thousand updates per day.

Cluster size Write (ms) Read (ms)
4 448.51 46.42
7 450.84 47.34
10 625.06 47.21

Fig. 2. Average read/write request execution time over 10000
requests with 10 clients, on clusters of 3f + 1 for f ∈ {1, 2, 3}.
f + 1 of the nodes were located in zone us-west, and f in us-central
and us-east. The cluster also checkpoints every 100 updates.

The bottleneck for write request execution is corre-
lated with the diameter of the largest 2f+1 cluster, and
similarly, the largest f+1 cluster for read requests. After
increasing the number of nodes located in the same
zone to 2f+1 from f+1, write request execution averaged
274.76 ms.

The local experiment (Fig 3) shows the performance
of computing and verifying cryptographic signatures is
not bottlenecking throughput at this scale. Finally, a brief
experiment over intermittent failures (which exceed the
heartbeat timeout and triggers a view change) shows that
KeyNet remains performant.



Mode Write (ms) Read (ms)
Regular operation 49.12 0.33

Intermittent failures 63.92 0.34

Fig. 3. Average read/write request execution time over 10000
requests with 10 clients, performed on local clusters. In the second
case, every 2 seconds, f machines were brought down (and brought
back up on the subsequent timeout). The cluster also checkpoints
every 100 updates.

B. Design

Deploying KeyNet on an FBAS like Stellar allows
the system to attain our design goals. From a security
perspective, the safety and consistency guarantees of
the protocol fundamentally prevent well-behaving nodes
from externalizing more than one public key for a given
identity; equivocation can be easily detected when clients
compare data received from different nodes. We’ve illus-
trated how distributed directory operations can succeed
or abort based entirely on local directory contents and a
signature from a domain authority, which prevents mali-
cious key changes without owner consent. The nature of
an FBAS allows for an arbitrary number of participants -
since all nodes would keep a full copy of the state under
SCP, the ability for 3rd parties to monitor changes in
the directory is unhindered. And as every update must
be signed before replication, any suspicious activity can
be automatically flagged and traced to the source. We
can then use each node’s dynamic quorum slices to
exclude malicious nodes from consensus. Finally, we’ve
shown how KeyNet can support the use of existing
PKIs and domain authorities to bootstrap trust from the
ground up and implemented a PGP key store that can
interface with a real-world mail client. For comparison,
in our PBFT-based implementation, adherence to the
design goals as listed is weaker. We still implement a
byzantine fault tolerant protocol, so non-faulty nodes
will never equivocate public keys, and the separation
of concerns in our system design ensures that directory
modifications are handled in the same way as with an
FBAS. However, PBFT has a closed membership, which
necessarily excludes potential auditing or the addition of
KeyNet nodes. Finally, we demonstrated that compati-
bility with existing PKIs remains achievable regardless
of the consensus backing.

VII. FUTURE WORK

Given the scope and time frame of this quarter’s
project, we made a simplifying decision to first imple-
ment KeyNet on top of PBFT as a proof of concept.
However, as hinted at in the previous section, a glaring

next step would be to begin porting our existing code
for use with a Stellar implementation as it would allow
the network to scale and open membership.

In Section III.A, we discussed our strict key update
policy and the resulting need for a key recovery mech-
anism. Implementing a threshold cryptography scheme
that could be used at the last resort, especially when
coupled with the trust preferences inherent in Stellar
quorum slices, would be quite useful.

VIII. CONCLUSION

KeyNet is a distributed public key directory that
provides strong safety guarantees and allows clients to
securely access and trust public key records. Combined
with an emerging class of byzantine consensus
algorithms, Federated Byzantine Agreement Systems,
KeyNet has the ability to retain those guarantees
while scaling to a decentralized, internet-wide network
with open membership. Trust in our directory can be
bootstrapped off of existing infrastructure, with minimal
reliance on single points of failure. Our work on KeyNet
can be viewed at the following locations:

The main KeyNet node and key directory implementa-
tion. https://github.com/sydneyli/keynet
Custom PBFT implementation. https://github.
com/sydneyli/keynet/tree/master/src/
pbft
Our fork of the Mailvelope Chrome Extension backed
by a KeyNet cluster. https://github.com/
colinman/mailvelope-pbft
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