
An Efficient PGP Keyserver without Prior Context

Alexander Rucker
acrucker@stanford.edu

December 13, 2017

Abstract

This paper describes the implementation of a syn-
chronizing PGP key server based on a simple
and efficient set reconciliation protocol. The key
server is able to synchronize very quickly when
the difference is small, and the estimation time
scales linearly with the size of the difference. The
estimation overhead does not increase with the
size of the underlying dataset. The key server is
able to reconcile a single-key difference with less
than 5kiB of overhead and in less than 10ms.

1 Introduction

Pretty Good Privacy (PGP) is a public key encryp-
tion application suitable for encrypting email and
other files [1]. It is based on the concept of a “web
of trust,” which eliminates the need for a central
certificate authority. Instead, users generate their
own keys, and sign the keys of other users whose
identifies they have verified. The user can then
verify that a key belongs to someone he or she has
never met before by following the web of trust
back to keys he or she trusts. This requires the
use of a key server, which allows users to publish
their public keys so that they can be downloaded.

Because PGP does not rely on a centralized au-
thority, there are multiple key servers that users
can use to publish their keys. These key servers
form a network, and periodically synchronize
with each other to ensure that all keyservers con-
tain all keys. The existing network is based on
the SKS keyserver, and currently contains approx-
imately 4.6 million keys with a total size of almost
10GiB [2]. The average key size is around 2kiB,
but key sizes vary depending on the amount of in-

cluded metadata, the selected key algorithm, and
the strength of the key. There are approximately
1000 updates to the stored keys per day, which is
an update rate of around 0.02% per day.

Because of this, an efficient algorithm is needed
to propagate updates throughout the network.
The SKS network uses the algorithm presented in
[3, 4], which represents the state of a keyserver as
a polynomial over a finite field where the hash of
each key is a root. The difference between two
servers can be found by solving for the roots of
the quotients of their polynomials. The polyno-
mials are sampled at a set of points, and then the
difference polynomial is found by interpolating
the quotients of the sampling points.

The keyserver described in this paper uses the
far simpler algorithm proposed in [5]. The algo-
rithm is based around an Invertible Bloom Filter
(IBF), and also uses a novel set difference algo-
rithm. The use of a difference estimator that ef-
ficiently estimates small differences means that
servers can frequently poll each other to check
for updates without requesting a large amount of
data.

2 Algorithm Summary

The key data structure used in synchronization
is the Invertible Bloom Filter (IBF) proposed in
[5]. This is a variant of a counting bloom filter,
with the addition of two extra values per bucket:
all of the data values xor’ed together, and all of
the hashes of the data values xor’ed together. An
example IBF is shown in Table 1(a). This filter
would be decoded by looking at the buckets with
one entry, removing that entry, and repeating un-
til all buckets were empty.

1

The synchronization relies on the ability to sub-
tract two IBFs and decode the difference. This
is the reason for the addition of the hash field:
the second element in Table 1(c) has a count of
one, but actually contains 2 elements from the
first IBF filter and one from the second. How-
ever, the hash field does not equal the hash of the
value field, so decoding instead proceeds with
the value from the last bucket, and completes suc-
cessfully.

The IBFs also play a key role in determining
the set difference. The Strata estimator uses a hi-
erarchy of bloom filters, where filter n samples
the original set with probability 2−n [5]. For this
implementation, the sampling is performed by
counting the number of trailing zeros in each data
element. All n bloom filters are subtracted, and
are then decoded in reverse order (from smallest
set to largest), counting the number of elements at
each level. Once a bloom filter at level n does not
decode, the estimated total number of elements is
multiplied by 2n.

The original implementation of the Strata es-
timator uses a full implementation, where all n
bloom filters are sent. Because the data elements
for the keyserver are 160-bit hashes, this would
require a large overhead. Instead, the key server
attempts to synchronize with a truncated estima-
tor first. If none of the levels decode, it requests a
larger estimator. This plays an important role in
keeping synchronization fast for small set differ-
ences.

3 Implementation

To demonstrate the feasibility of using Strata set
difference estimators and invertible bloom filters
for synchronizing PGP keys, a proof-of-concept
implementation was developed. The implemen-
tation uses the BerkeleyDB [6] key-value store for
storing keys on disk and uses the Ulfius [7] frame-
work to implement a RESTful HTTP API. The
implementation supports synchronizing keys be-
tween servers, and places an emphasis on mini-
mizing computation overhead. It is implemented
in less than 2200 lines of C89, including header
files, -WAll clean, and checked using Valgrind
for memory leaks and uninitialized memory ac-

cesses. SHA-1 is used throughout the code as a
hash function, because cryptographic hashes are
not necessary for the IBF.

3.1 Design Choices

To use the bloom filters to effectively decode the
set difference, it was necessary to choose some
universe of values to map all keys to. A sim-
ple choice would be the key fingerprint, or some
substring thereof. However, it is possible to up-
load multiple keys with the same fingerprint, be-
cause the fingerprint is only computed based on
the public key data. As a user acquires signatures
for his or her key, he or she will want to upload
new revisions of the key that contain these new
signatures. If the server already contained the
key, though, it would not be able to handle the
revision. A similar problem involves sending the
revocation for some key, which must also be in-
dexed by fingerprint.

Therefore, the value chosen is the full 160-
bit SHA-1 hash of the entire key data. This
means that two different revisions of the same
key will hash to different values, and will prop-
agate through the network separately. When a
user requests the key data for a specific finger-
print, all keys with that fingerprint will be re-
turned by the search. A space-efficient implemen-
tation may choose to store all packets with a key
separately, and perform de-duplication of pack-
ets for updated keys. This would greatly increase
the complexity of the database, and was not im-
plemented because the expected rate of key up-
dates and revocations is low.

Another implementation decision was the size
and number of bloom filters and set difference es-
timators to include. For simplicity, all data struc-
tures were scaled along one axis: difference esti-
mators by the number of levels, and bloom filters
by the number of buckets. The strata estimators
use 2n levels, 4 buckets per key, and 40 total buck-
ets for 0 ≤ n < 5, and the bloom filters use 10 ∗ 2n
buckets with 4 buckets per key for 0 ≤ n < 11.
An optimized implementation would most likely
want to use an increased k for larger bloom filters,
and smaller bloom filters for smaller strata.

2

Count Values Hashes
1 A H(A)
2 B ⊕ C H(B)⊕H(C)
1 C H(C)
2 B ⊕A H(B)⊕H(A)

(a)

Count Values Hashes
1 A H(A)
1 D H(D)
1 D H(D)
1 A H(A)

(b)

Count Values Hashes
0 0 0
1 B ⊕ C ⊕D H(B)⊕H(C)⊕H(D)
0 D ⊕ C H(D)⊕H(C)
1 B H(B)

(c)

Table 1: Two invertible bloom filters and their difference.

3.2 Basic Operation

Before the server starts for the first time, the oper-
ator must load it with a recent dump of another
keyserver because the synchronization protocol
is not able to synchronize if the set difference is
too large. Once the database is built, the server
is started with a user-specified list of peer servers
and synchronization intervals. The server runs
one-way reconciliation against each peer. One-
way reconciliation was chosen to simplify the pro-
cess of adding new servers: a user does not have
to ask permission to start a read-only keyserver,
unlike SKS [2].

The synchronization protocol starts by request-
ing the smallest set difference estimator, and re-
questing progressively larger estimators until it is
able to successfully decode the difference. Once
it has decoded the difference, it requests a bloom
filter with at least 3 times as many buckets as the
estimated difference. This is based on the em-
pirical result in [5], and intended to give an ex-
tremely high probability of successfully decoding
the bloom filter (greater than 99%). The server
then decodes the bloom filter, producing a list of
key hashes. It then downloads each key from the
peer server using the hash.

3.3 API

The API for the keyserver is shown in Table 2.
The API is designed for simplicity; by using
HTTP requests for all updates the user can ef-
fectively test the behavior of the server using
only a web browser. The server sends the val-
ues of bloom filters and strata estimators by Base-
16 encoding the hash values and printing them
with their counts, which allows easy manual ver-
ification of correct output. The API is also in-

tended for effective use with a document cache.
During normal operation, the server will serve
the same difference estimator, IBF, and recently
added keys. This is a small amount of data, on
the order of a few kilobytes.

3.4 Limitations

Because the server is intended as a proof of con-
cept, there are several minor limitations. One
limitation is that the server does not use Berke-
leyDB’s transaction subsystem. This was chosen
to speed up database build time, and decrease the
complexity of managing the server. Although for
many systems this would be a major limitation,
it is not a major problem assuming servers syn-
chronize with each other: for a key to be lost in a
server failure, it would be necessary for the server
to fail without writing the key to disk and fail be-
fore any other peer downloaded the key. In this
rare failure case, the user would only have to re-
upload the public key. To avoid errors, the server
traps the SIGTERM signal, and uses it to ensure
clean shutdown at the operator’s request.

The server is also not designed for bulk
operations using the online /pks/add and
/pks/lookup operations. This is not expected
to be a major limitation; users are not supposed
to upload many public keys to a keyserver. Addi-
tionally, the /pks/lookup endpoint is only in-
tended for synchronizing small differences and
downloading specific keys be end-users. When
a sysadmin wants to initialize a new keyserver
or synchronize a keyserver after a long time of-
fline, he or she cannot do so by setting it up to
peer with an existing keyserver; instead, the new
server needs to be initialized with a relatively re-
cent dump of PGP keys.

Finally, the server does not fully parse and val-

3

Endpoint Method Description
/pks/lookup GET Supports searching for keys by user ID string, key ID, finger-

print, or hash. Also supports downloading matching keys.
/pks/add POST Uploads a single ASCII armored key to the keyserver.
/ibf/k/N GET Returns the invertible bloom filter with k buckets per key

and N buckets total.
/strata/d/k/N GET Returns the set-difference estimator with d invertible bloom

filters, each with k buckets per key and N total buckets.
/status GET Produces a human-readable page describing the status of the

keyserver, including the status of its synchronization peers.

Table 2: The API supported by the keyserver.

idate keys. This means that the server has no
concept of key expiration dates, subkey signa-
tures, revocations, or erroneous keys. Keys are
parsed to ensure that they contain valid packets,
which limits the ability to upload random data,
and keys are verified to be at least Version 4 [8].
Although it would be useful for the server to fully
validate keys, it would significantly increase the
complexity of the server code and clients must
perform their own validation anyway.

4 Evaluation

There are three metrics necessary to evaluate the
effectiveness of a distributed key server:

• Number of peer servers

• Zero-difference overhead

• Overhead scaling

4.1 Throughput

The first key metric is the synchronization
throughput of the key server. Although this
implementation is not optimized for maximum
throughput (it uses snprintf to build each re-
sponse, and performs several buffer copies per
response that are not strictly necessary), it is still
sufficiently fast for normal operation. The results
of using ApacheBench [9] to perform requests
against several key data structures are shown in
Table 3.

This shows that they server is able to handle
a large number of synchronization requests per

Endpoint Requests/sec
/strata/1/4/40 10868
/strata/4/4/40 5374
/ibf/4/10 16851
/ibf/4/20 15227
/ibf/4/40 12436
Search for key 9
Download key 6805

Table 3: Operation throughput for several com-
mon operations on the full PGP key database.

second. Assuming two servers are peering with
each other once every minute, they can expect
to exchange approximately one update per peer-
ing operation. This can be handled using the
minimum-size set difference estimator, a single
key download, and the minimum-size bloom fil-
ter. In total, a user could expect to synchronize
tens of thousands of servers over this protocol
per minute, without considering the addition of
a caching layer. With a caching layer, the synchro-
nization throughput is effectively infinite.

The server does have a very poor response
time for key searches, which is due to an unop-
timized index that requires every search to scan
the list of all keys. This was necessary for user
ID searches, which return keys whose user IDs
contain the provided search query. This could be
improved by adding a more efficient data struc-
ture for some searches, such as email searches,
or using an index that takes advantage of the
typical name (comment) <email> structure of
user IDs.

4

4.2 Synchronization Overhead

The second key metric, which is closely related
to throughput, is the zero-difference synchroniza-
tion overhead. As servers start synchronizing
more and more frequently (less than once per
minute), they can expect to synchronize with
peers that do not have any differences. If there
is no expected difference, the server will only
have to serve the smallest set difference estima-
tor, which is less than 4kiB, and could be made
even smaller by decreasing the number of buck-
ets. If there is a difference, the smallest bloom
filter must also be served, and is less than 1kiB.

Another key concern is how the synchroniza-
tion overhead scales with dataset size. Figure 1
shows the total number of bytes transferred to
synchronize varying numbers of keys, and Fig-
ure 2 shows the time to synchronize two key-
servers running on the same laptop. Neither the
synchronization time nor data increase with the
size of the underlying database; they only in-
crease with the number of key that actually have
to be transferred. The increase in bloom filter
overhead is linear in the number of keys, and the
increase in set difference estimator overhead is
roughly logarithmic.

Additionally, the server can synchronize less
than 10 keys within 100ms, and 1 key within
10ms. Although running the synchronization
over the Internet would increase the transfer la-
tency, this shows that the time to encode, decode,
and process the relevant data structures is very
low.

5 Conclusion

In this paper, I implemented and benchmarked
a new PGP key server with an efficient set rec-
onciliation algorithm. The key server is imple-
mented in a very small amount of code: less than
2200 lines of C89, excluding the HTTP framework
and the database, with core difference algorithm
taking a few dozen lines of code. This demon-
strates the simplicity of the difference estimation
and reconciliation procedure. Benchmarks of the
key server show that it is able to efficiently rec-
oncile differences and that the difference reconcil-

iation time is low and scales gracefully with in-
creasing differences.

References

[1] gpg(1) – linux man page.
https://linux.die.net/man/1/gpg.

[2] sks-keyserver. https:
//bitbucket.org/skskeyserver/
sks-keyserver/wiki/Home.

[3] Yaron Minsky, Ari Trachtenberg, and
Richard Zippel. Set reconciliation with
nearly optimal communication complexity.
IEEE Transactions on Information Theory,
49(9):2213–2218, 2003.

[4] Yaron Minsky and Ari Trachtenberg.
Practical set reconciliation. In 40th Annual
Allerton Conference on Communication,
Control, and Computing, volume 248, 2002.

[5] David Eppstein, Michael T Goodrich, Frank
Uyeda, and George Varghese. What’s the
difference?: efficient set reconciliation
without prior context. In ACM SIGCOMM
Computer Communication Review, volume 41,
pages 218–229. ACM, 2011.

[6] Oracle berkeley db. http:
//www.oracle.com/technetwork/
database/database-technologies/
berkeleydb/overview/index.html.

[7] Ulfius. https:
//github.com/babelouest/ulfius.

[8] J Callas, L Donnerhacke, H Finney, D Shaw,
and R Thayer. Openpgp message format.
RFC 4880, RFC Editor, 11 2007.

[9] ab – Apache HTTP server benchmarking
tool. https://httpd.apache.org/
docs/2.4/programs/ab.html.

[10] David Shaw. The OpenPGP keyserver
protocol (HKP). Internet-Draft
draft-shaw-openpgp-hkp-00.txt, IETF
Secretariat, 3 2003.

5

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000

B
y
te

s
Tr

a
n
sf

e
rr

e
d

Set Difference

Data Overhead for 20k Keys

Strata
Bloom

Key

(a)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000
B

y
te

s
Tr

a
n
sf

e
rr

e
d

Set Difference

Data Overhead for 200k Keys

Strata
Bloom

Key

(b)

Figure 1: Synchronization data sent for keyservers with approximately 20k and 200k entries.

 1

 10

 100

 1000

 10000

 1 10 100 1000

S
y
n
c

Ti
m

e
 (

m
s)

Set Difference

Time Overhead for 20k Keys

Strata
Bloom

Key

(a)

 1

 10

 100

 1000

 10000

 1 10 100 1000

S
y
n
c

Ti
m

e
 (

m
s)

Set Difference

Time Overhead for 200k Keys

Strata
Bloom

Key

(b)

Figure 2: Synchronization time for keyservers with approximately 20k and 200k entries.

6

