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1 Overview

We present Partition, a greedy repartitioning system for distributed graphs. Partition operates in a
decentralized fashion, reorganizing vertices and edges across server nodes, without the need of a master.

2 Motivation and Related Work

With the rise of large distributed data stores, exploiting patterns and workload history to shard data across
nodes is critical for reducing transaction latency.

Facebook’s large social network offers one significant use case. At Facebook, servers receive queries from
clients requiring them to get data from external databases (queries such as: who are my friend’s friends?).
Because clients are largely interested in their own sub-networks, having a single node deal to all queries
from a sub-network can allow nodes to keep common data in cache and reduce cache misses. Effective
partitioning of such a graph - where friends are vertices and friendships are edges - ensures that queries from
friends are dealt with by the same node. Facebook implemented their centralized distributed repartitioning
algorithm, lowering cache misses by 50% [1].

Schism [2], on the other hand, uses repartitioning to minimize the cost of distributed transactions. Their
consensus protocol needed to execute such a transaction “adds network messages, decreases throughput,
increases latency, and potentially leads to expensive distributed deadlocks.” To prove this, the authors
conduct a simple experiment in which clients attempt to read two random rows of a database sharded
across multiple servers. Distributed transactions are shown to take twice as long to complete, along with a
significant hit to throughput. To reduce need for distributed transactions, Schism repartitions the database.
Specifically, Schism creates a fully complete subgraph for every transaction (each tuple, for example, may
be represented by a vertex). Vertices that represent the same tuple across transactions are connected by
an edge. Edges between vertices of the same tuple are given weights, with higher weights to those involved
in more write transactions. By partitioning this graph with a min-cut, vertices sharing transactions get
pushed to the same partition, keeping the number of distributed transactions small. Because replicated
vertices that require updating have higher weight edges, the min-cut prefers to keep them in the same
partition, thus reducing the overhead of writing to replicated nodes.

This project attempts to solve the general problem of repartitioning but unlike Facebook, which uses a
master to coordinate repartioning, Partition is decentralized. While our underlying algorithm is similar to
Facebook’s, we developed it independently before learning about their solution. While our implementation
stops after a certain number of repartitioning rounds, it is designed to run forever.

We propose a system that would not only work in the above use cases, but also in large organic networks
that have no centralized authority and are dynamically changing. As distributed ledgers such as blockchain
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become unwieldy and are used to record trillions of transactions, having nodes store only portions of the
graph depending on their geographic location and clusters of transactions may be a viable solution (for
example, more money may be exchanging hands in one area than across two).

3 The Partition Model

Before we introduce the Partition model, we offer some terminology and assumptions. Note that to reduce
scope we do not implement every feature here in our final system (see implementation section).

3.1 Terminology

1. Graph: A graph consists of vertices and edges sharded across nodes. Vertices and nodes are described
by ids.

2. Nodes: A node contains vertices and edges, but is restricted in the number of vertices it can hold.
It also has data structures to hold vertex neighbors and mappings from vertex to node. Due to the
large size of the graph, we assume that nodes only keep track of their own vertices and the nodes
that vertex neighbors are on. We refer to the entire collection of nodes as the cluster.

3. Transaction: A transaction is a message that specifies a single vertex, the node that is was on, and
the node that it is being moved to - it also includes a list of neighbors of that vertex and the nodes
on which they reside.

4. Instance: Our system progresses in a series of instances. Each instance, one transaction is committed
by the cluster.

5. Consensus: We use Basic Paxos [4] [3] to ensure safety and consensus among nodes. Paxos provides
safety with up to half nodes failing under asynchronous network conditions. It is important for our
system to be consistent at the end of every instance - i.e. if vertex 1 moves from node 0 to node 2,
all other nodes should know of the change, most especially node 2. This is required not only to keep
node information about the global graph up to date, but also in case underlying data needs to be
moved.

6. Proposal: Each proposal consists of the instance, current round number within that instance, node
id, and transaction message. Proposals within an instance are ordered by round number and then
node id.

3.2 Normal Operation

The Partition model runs through a series of instances of Basic Paxos. At the start of every instance, every
node queries its own vertices and edges and determines a transaction it wishes to propose. Using a series of
PREPARE and ACCEPT messages part of the Paxos protocol, it attempts to get its transaction accepted
by a majority of nodes in the cluster (including itself). At the end of every instance i, a transaction is
selected and then executed by all nodes. Note that not all transactions change each node - if a transaction
relates to vertices not on a node, then it becomes a no-op for that node. Nodes are not allowed to work
on future Paxos instances until they figure out the transaction chosen in the current instance.

3.3 Determining a Transaction

We propose a simple greedy algorithm. Abstractly, this algorithm proceeds by nodes acting greedily and
pushing vertices they do not want to other nodes.

To determine what transaction to propose, every node randomly picks a vertex from its vertex set and
attempts to move v to wherever it has the most amount of neighbors. If that node has space, it starts a
Paxos proposal to get this transaction confirmed. If it does not, the node proposes a NONE transaction.
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While we only implemented the greedy approach above, here are other repartioning algorithms for future
models:

1. Load Balancing: Let CAP (M) represent the percentage of remaining system capacity present
in node M . Here, rather than suggest a random vertex, a node n weights each vertex v by the
following: maxm

EDGES(v,m)
EDGES(v) ∗ CAP (m) where EDGES(v,m) is the number of edges v has on node

m and EDGES(v) is the degree of vertex v. Nodes propose transactions for vertices with high
weights.

2. Group Transactions: Using information gained from Paxos messages, nodes create a fuller view
of the graph and fill in missing edges probabilistically based on average degree counts of the current
network. Then, they propose transactions that span multiple nodes. Specifically, nodes iterate
through all clusters X of size 4, 5, 6, weighting them with CC(X) ∗ INE(X), where CC is the
clustering coefficient and INE is the percentage of inter-node edges. Transactions are proposed to
move these clusters to empty nodes. This weighting gives priority to tight clusters that are spread
out across multiple nodes.

3.4 Consensus and Failure

The Paxos consensus protocol is used to pick a transaction for a given instance and to ensure that everyone
agrees to the same transaction. We implement Paxos based on a Paxos lecture, using similar variable names
to keep consistency for ease of debugging [3]. See paxos.py for our implementation (along with server code).
We defer an in depth treatment of Paxos to the original paper.

Nodes log both their graph data structures as well as Paxos state to disk. When a node comes back alive,
it starts Paxos as normal - if any other node sees PREPARE or ACCEPT messages for old instances, it
replies with information about the transaction that was chosen in that instance to help sender node get
up to speed.

We deal with the following cases:

1. Node dies in the middle of a paxos round : nodes store what they have accepted when they start up
again.

2. All nodes except the proposer die before receiving prepare and reply messages: No retransmission is
necessary. The proposer simply waits. Other nodes will eventually propose transactions with higher
round numbers.

3. Node dies before executing transaction: The instance number of paxos is only updated after a trans-
action has been logged. Thus the node begins a paxos round all over again. Other nodes see that it is
attempting a round for an old instance and send update messages to inform it of the last transaction.
Because we are only dealing with vertices and edges (which are stored as part of the transaction
messages), we avoid issues of safely transferring underlying blobs.

4 Implementation and Experiments

We did two implementations for the project. In Implementation 1 (see master branch), nodes are assumed
to always be alive. We used this to produce the examples seen in this paper. In Implementation 2 (see ft
branch), nodes can all die and start back up again and continue where they left off. However, we need a
majority of nodes alive for any repartioning to occur due to consensus.

Note to teaching team: the second implementation has at least one weird concurrency deadlock we’ve
found under a certain run and testing of this implementation is still remaining.

Here are the various threads in each server node:
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1. Server: Listens for incoming messages and adds them to a queue.

2. Worker: Responds to CHOSEN, PREPARE, PREAPREREPLY, ACCEPT, ACCEPTREPLY mes-
sages and executes Paxos logic.

3. Proposer: Proposes transaction repeatedly until it gets chosen or it is informed of another chosen
transaction. If a proposer gets rejected in Basic Paxos, we add a random sleep before it starts again
(in case two proposers get repeatedly caught in prepare/accept cycles - see page 7 of [4]).

4. Main: Controls worker and proposer to execute together, one instance at a time. In between
instances, executes the chosen transaction and determines what next transaction to propose. It also
sleeps for a time proportional to how many of its transactions have been chosen by Paxos, to allow
fairness to other nodes in the system.

In the second implementation, we also have an ‘update worker’ which checks for update messages from
other nodes about instances it might have missed when dead.

Details on using the system are on our github. Briefly, users can create files specifying vertices and edges
(they can choose to shard randomly or specify a starting configuration). There are also scripts to create
random Erdos Renyi graphs [6] and Preferential Attachment graphs [5]. The run.py script creates folders
for each node. The user starts up every node - these need to be done together as we assume nodes are
all live - and the system goes through a set number of Paxos instances. We then gather data from all the
nodes to determine which vertices are where and use our pre-existing edge file to draw the final cluster
setup (using the graphviz library). We tested the system by running each node as a separate process on
one machine.

We now show a short series of examples growing in complexity. Note that example 3 may be done with
slightly different versions of the system (i.e. a version with an extra sleep call, allowing vertices with in
and out edges equal to also be moved, etc). The examples are in the appendix. Further, there are more
examples in our github under the examples/ directory

1. Example 1 In Example 1, we demonstrate the common case of multiple subgraphs or clusters within
a larger graph. Note that before repartitioning, the clique made by (v1, v2, v3) are on three separate
nodes. The two other cliques are over two separate nodes respectively. After a series of random
repartitions, we find that two of the cliques are on unique nodes and only one of them spans two.
The number of edges in between nodes shrinks from 7 to 2.

2. Example 2 This subgraph was generated from a Erdos Renyi model on 15 vertices. The number
of edges between nodes shrunk 15 to 6. Here, notice that there are two vertices that do not have
any neighbors. One of the drawbacks of our system is that it does not make any assumptions about
vertices that have yet to have neighbors. In a social network example, it may make sense to place
vertices without any friends on nodes corresponding to similar geographic locations.

4.1 Example 3

We conduct a series of experiments on Erdos Renyi graphs on 25 vertices. Specifically, we randomly assign
vertices to nodes and then add an edge between two vertices with some probability p. Note that because
Erdos Renyi graphs are random, we expect to not achieve a high degree of success - as any clusters are
due to variance - but we use this as an easy way to generate test graphs.

We also conducted a series of experiments on preferential attachment graphs on 25 vertices. We built this
using the model in [5] - the only difference is our graphs are undirected. In the referenced algorithm, p is
the probability that a new vertex connects randomly to an existing node and 1 − p is the probability that
it picks a random vertex and connects randomly to one of its neighbors.
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For both, we determined the average percentage decrease of inter-node edges. An inter-node edge is an
edge that spans two server nodes. The percentage decrease for high p is understandably low (there are too
many edges to partition), but note the average successes for both Erdos Renyi with low probabilities and
all preferential attachment graphs. Here are our results:

Type Probability Average Percent Decrease (over 10 runs) Standard Dev

Erdos Renyi
0.1 39.07 15.43
0.5 11.42 5.508
0.9 1.827 1.258

Preferential Attachment
0.25 56.69 18.52
0.5 50.31 9.189
0.75 54.39 13.45

5 Conclusion

As part of this project, we did an extensive amount of experimenting and prototyping that did not make
it into the final project. These include work on:

1. Simulation: A simulation to test our partitioning algorithm. Here, nodes swapped vertices all
within a single process. See prototypes/simulation.py.

2. Algorithms: Exploring other algorithms for graph partitioning as well - for example, the randomized
Karger algorithm or a max flow min cut solution.

3. rpyc: Distributed model using rpyc remote procedure calls (proof of concept). See prototypes/rpyc
folder.

4. Direct Connection: Prototyping model in which nodes connect to other nodes directly (rather
than broadcast transaction details to the entire cluster). See the original/ branch.

In conclusion, we described and implemented a greedy decentralized repartitioning system for distributed
graphs. We proposed multiple algorithms for repartitioning and demonstrated experimental results using
greedy repartitioning and Paxos. Most notably, we showed significant decreases in inner-node edges after
running graphs through this system. Future work would include adding more repartioning algorithms
involving node to node messaging about various views of the network.
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Appendix

(a) Before

(b) After

Figure 1: Example 1

(a) Before (b) After

Figure 2: Example 2
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