
No Lost or Laden Updates in a Collaborative Web Application

Jake Smola

December 13, 2017

1 Introduction

In the context of distributed systems, the “no lost
updates” problem concerns the preservation of all
users’ contributions to a shared resource given mul-
tiple users may modify the resource simultaneously.
This paper describes our solution to the no lost up-
dates problem within a collaborative web application
called “El Capitan”.

El Capitan is a prototype cyber attack planning
application that allows red teams to document cy-
ber attack tactics, techniques, and procedures and
coordinate their attacks in a common setting. We
began the project in August of 2017 with certain
functional priorities in mind; as a result, our recent
addition of no lost updates logic was heavily influ-
enced by the following aspects of the current design:
(1) El Capitan is a single-page application where
the primary client interface is fully contained within
the web browser; (2) the architecture includes a sin-
gle database server that stores persistent data and
a single, one-thread web server that hosts the web
page logic and queries the database on behalf of the
clients; (3) the client interface consists of a visual,
directed acyclic graph of data-containing nodes that
can be added as children of existing nodes, removed,
or modified by users; (4) the client can only have
outstanding (uncommitted) changes to one node at
a time1

These characteristics differentiate El Capitan from
typical applications seeking to prevent lost updates,
such as version control systems like git. For instance,
version control systems generally operate in parallel
with a file system that constitutes the primary client
interface for writes and reads. However, our solu-
tion is restricted to the the context of a web appli-

1This is for two reasons: (1) we consider the web browser
to be an unstable platform where user work may be lost of-
ten due to various user, server, or network errors; (2) most
web browsers have limited local storage (often only 10 MB) in
which to store large transient data.

cation where the user’s primary interface is embed-
ded within the application itself and is thus divorced
from the user’s local file system. In section 3 we will
show that the characteristics of El Capitan actually
allow us to simplify our implementation of no lost
updates.

2 Related Work

At a high-level, preventing lost updates can be bro-
ken down into two steps:

1. Detecting conflicts between diverging user up-
dates to shared resources

2. Acting to preserve the effects of said updates.

Many of the tricks version control systems utilize
in implementing these two steps mirror or are de-
rived from contemporary work in distributed com-
puting.

On the topic of conflict detection, one of the sim-
plest solutions involves the use of version vectors, as
originally described in [4]. When implemented, each
data source is associated with a version vector that
tracks the (Lamport) time at which the data was
modified at each replica.

Tra is an alternative to version vectors that also
includes in each vector coordinate the (Lamport)
time at which the data was synchronized [1]. This
addition afford a more expressive notation with
which a replica can ascertain just how much of a
file’s history of updates another replica is aware of.
Vector time pairs thus facilitate more efficient syn-
chronization or resolution than do version vectors
alone.

Some existing storage protocols incorporate
derivatives of versionining in so-called dependency
checks when detecting conflicts. Bayou write pro-
cedure calls take as input the requesting replica’s
expected result to determine whether or not con-
current writes have impacted the target data, or in

1



other words, whether or not the version being modi-
fied by the replica corresponds to the version stored
at the other end [5]. Put operations in Amazon’s
Dynamo key-value store also utilize a form of de-
pendency check by taking as input the requesting
replica’s context. This context contains vector clock
information that likewise provides data version in-
sights and supports causality and conflict determi-
nations [2].

With respect to conflict resolution, the two-way
and three-way merge are commonly used to recon-
cile conflicting changes to a resource(s). The com-
mon two-way merge model takes two resources and
identifies identical and distinct portions of each re-
source and alerts the requesting client(s) of the con-
flicts for manual resolution. The three-way merge
model takes two resources and a third (ancestor) re-
source from which the two resources are derived and
improves on the output of the two-way merge by pos-
sibly making some merge decisions automatically on
behalf of the clients. The three-way merge is able
to do this by using the ancestor resource to deter-
mine the precise changes each client made since the
ancestor version. In this case, changes that do not
conflict can be applied without asking the client to
take action. For this reason, we employ diff3, an
open-source, three-way merge library [3], for conflict
resolution since it simplifies the user’s task.

3 Method

We will now describe our no lost updates additions
to El Capitan. There are seven actions a user can
take in El Capitan that induce a write operation:

1. Add a node

2. Add an edge

3. Remove a node

4. Remove an edge

5. Update node data

6. Import a graph

7. Change a node color

However, most of these actions require little effort
and by design, overwrite the effects of the previous
action of the same kind. For instance, a node can
only have one color, and an edge either exists or it

does not. Thus, we only provide no lost update sup-
port for the following pairs of concurrent behaviors
on nodes:

1. Remove-Update (Forgotten Update)

2. Update-Update (Conflicting Update)

3. Add-Add or Update-Add (Conflicting Add)

It is important to note that in our case the web
server is the sole source of queries on the database
and operates on a single thread, thus blocking si-
multaneous client transactions on the database (rest
API calls). Thus each action will either commit or
abort before another action is considered.

We will now describe our no lost update solution
for each of the above cases.

3.1 Forgotten Update

This scenario occurs when client A attempts to up-
date a node that client B had removed prior to the
latest synchronization of client A. These two actions
cannot be merged and so we must choose which ac-
tion is committed. Based on the induced hierarchy
of nodes and data, we chose to commit the node re-
moval since this is analogous to removing a directory
in which another user is modifying a file. Further-
more, a client could remove an entire path of the
nodes making updates to lower tier nodes irresolv-
able. Still, to prevent loss, we allow the updating
client to recover by prompting them with a warning
stating the node being updated no longer exists, and
that the client should save their changes externally
to the web application if they wish to preserve their
work.

3.2 Conflicting Update

This scenario occurs when two users concurrently
update the same node. A merged outcome is possi-
ble in this case and so we can construct an update
protocol to detect conflicts and if necessary merge
changes.

We wish to reliably detect conflicts with as little
overhead as possible. In section 2 we described ver-
sion vectors, which are among the cheapest methods
we encountered for detecting conflicts. We thus in-
corporated version vectors into our first prototype
design. However, we soon found their organic im-
plementation to still require more state than was

2



Figure 1: El Capitan update protocol.

necessary for our problem. In the typical setting
where version vectors are employed, each replica can
communicate with every other replica. This requires
each replica to have oversight of every other replica’s
version and hence, each replica maintains a vector in
which each coordinate corresponds to one replica. In
our case, we have a centralized server managing all
commits and clients cannot communicate amongst
themselves. We can therefore simplify the version
vector paradigm by having the server alone maintain
a version vector. However, this still requires signif-
icant state on behalf of the server as it must track
a potentially highly dynamic pool of clients. We
can thus off-load server state and have each client
maintain the version of each node in their posses-
sion. During an update, the client can then provide
their version information to the server to facilitate
conflict detection. Our precise implementation uses
Lamport timestamps as versions. New nodes are as-
signed version 0 and each time a node is updated by
any client, its version is incremented. When a client
reads node date (on initial page load or refresh), it
downloads the most recent version alongside each
node. In the non-byzantine setting, with these in-
variants in place, the server can immediately accept
updates to nodes whose database version matches
the version passed by the client during update, as
this signifies the client is updating the same version
of the data they had originally read. We call this

type of update a soft update. A soft update succeeds
if no conflict is detected and fails otherwise.

If a client’s updated data conflicts with data al-
ready committed by another client, the server will
attempt to reconcile the conflict with as little input
from the human user as possible by using a three-way
merge. However, the the three-way merge requires
more data than is provided in the soft update se-
quence. The process requires a version of the data
being modified that causally precedes both of the
conflicting versions. As in the case of git, the server
can store the history of each node to identify this
common ”ancestor” when resolving conflicts. How-
ever, this would be extremely space-intensive. Since
we already trust the client to provide the appropri-
ate version during soft updates, we can also off-load
this responsibility to the client by having the client
send to the server the original version of the data
that the client had read prior to writing. Unlike
the server, the client would not need the entire node
history because it only needs to find the immediate
ancestor from which its new data is derived, and not
an earlier ancestor it shares with any other, poten-
tially severely outdated client. Since the client does
not update its local view until a change has com-
mitted, the client does not actually need to store
any additional data. Additionally, the data associ-
ated with the client’s most recent read is the most
recent ancestor of both conflicting versions and thus

3



Figure 2: El Capitan add protocol.

the optimal ancestor for the merge. This is the case
because there is no earlier ancestor with respect to
the client’s new data, and because the client can
only read committed data from the data base, so
any changes to this data between some client’s read
and subsequent write operations must also be de-
rived from (merged with) the original data read by
the client.

In the case of a conflict during a soft update, the
server thus requests the original data from the up-
dating client. To prevent the server from having
to store potentially unbounded state, client has to
include the new data already sent during the soft
update again in its response. The server can con-
sequently run diff3 to compute a three way merge.
If the merge succeeded, the server can update the
database. If the update could not be automatically
reconciled, the server sends the partially merged
data back to the client for human reconciliation. Un-
fortunately, given the properties of our problem, this
partially merged data is only stored ephemerally in
the user’s browser session and thus must be recon-
ciled within the same session to prevent data loss.
Users are encouraged to store the data persistently
on local disk in the event they cannot reconcile the
data during the session. We call the update proce-
dure in the case of a conflict (failed soft update) a
hard update.

El Capitan’s refined update protocol is depicted
in figure 1.

3.3 Conflicting Add

The conflicting add scenario occurs when a client
adds a new node that already exists (shares a node
label and a parent node with an existing node). El
Capitan handles these conflicts similarly to the way
it handles updates. The only differences include: (1)
when the client requests to add the node, the node
in question is not yet recognized by the server so
it does not have a version and the server instead
verifies whether or not the node already exists; (2)
in the case of conflict, the server can immediately
attempt a hard update of the existing node since no
ancestor data exists.

El Capitan’s refined add protocol is depicted in
figure 2.

4 Evaluation

We evaluate our update protocol in terms of ACID
properties, latency as compared to an intuitive al-
ternative implementation, and space complexity re-
quirements. We forego analysis of the add protocol
as it is derived from the update protocol and only
makes improvements on its workflow.

4.1 ACID Properties

Neo4j, the back-end database system we utilize al-
ready provides ACID guarantees and so our analy-
sis is limited to assessing whether or not any server

4



or client data dependencies violate these guarantees
outside of Neo4j ’s workflow.

In terms of atomicity, an update cannot be com-
mitted unless a query is dispatched to Neo4j ; be-
cause no additional data is mutated after the web
server queries the database on a particular update,
the atomicity of our update shares fate with each
Neo4j query. Because Neo4j queries are atomic, our
updates are atomic.

Regarding consistency, we know an update can fail
at one of three locations: the client, the web server,
or the database. If the update fails at the server or
the client, then it will have aborted since no query
would have been sent to the database. If an update
fails at the database, then Neo4j is responsible for
guaranteeing consistency with a rollback to a previ-
ous of the data.

In terms of isolation, we know the server operates
on a single thread and does not begin processing
additional updates until a soft update succeeds or
the subsequent hard update terminates. Therefore,
simultaneous update transactions are blocked and
concurrent data operations on the same node cannot
conflict.

Finally, we guarantee durability since all update
transactions are assumed aborted until committed.
If an update transaction is committed, it means
Neo4j has guaranteed it is committed. Otherwise,
the transaction cannot possibly be committed be-
cause the durable state can only be stored in Neo4j,
which has not committed the transaction.

4.2 Latency

We consider an intuitive alternative to our update
protocol (baseline) to consist entirely of hard updates
in order to eschew multiple back-and-forth messages.
We fix the following variables to conduct our anal-
ysis, assuming an enterprise LAN environment con-
nects the servers and clients: (1) network bandwidth,
propagation delay, and queuing between all assets is
uniform and fixed; (2) the sum of end-to-end propa-
gation and queuing delay for all pairs of assets is
100 µs (3) HTTP response frames are 200 bytes;
(4) node data is fixed at 500 bytes (before and af-
ter updates); (5) the data rate between all assets
is fixed at 10 Mb/s; (6) HTTP/TCP hand-shakes
are negligible and HTTP keep-alive is active; (7) the
web server and database server are co-resident on
the same hardware and thus network traffic between

these two assets is negligible; (8)server-side compu-
tation time is negligible.

We rely on an ideal latency model where d rep-
resents delay and total latency L = dpropagation +
dqueueing + dpacketization. Let Ls, Lf , and Lh respec-
tively represent the latency of a successful soft up-
date, the late latency of a failed soft update, and
the latency of a hard update. Let p represent the
proportion of soft updates that succeed. Note that
Lf = Ls + Lh.

Under our ideal model, our protocol’s latency is
L = pLs + (1− p)Lf , which we compare to the base-
line latency L′ = pLh.

Plugging in our fixed variables, we get:

Ls = 2(1e−4) +
8(700 + 200)

10e6
= 9.2e−4

Lh = 2(1e−4) +
8(1200 + 200)

10e6
= 1.32e−3

Lf = Ls + Lh = 2.24e−3

Plugging these values back into L and L′, we find
that L ≤ L′ when p ≥ 0.8̄4.

This means our update protocol incurs as much or
lesser latency than the baseline when soft updates
succeed at least 85% of the time. We believe ac-
tual El Capitan usage will meet this criteria as the
intended users of this application consist of small
teams accessing a large amount of data.

4.3 Space Complexity

It is difficult to compare El Capitan to any exist-
ing application of a similar nature, however, as com-
pared to the previous version of El Capitan, the
new version’s space requirements differ marginally.
Across the database, the web server, and the clients,
each asset only needs to maintain an additional key-
value pair for each node, consisting of the integer
node version.

5 Conclusion

Given the ACID, space and latency properties of our
implementation, we believe our no lost updates pro-
tocols are both reliable and efficient.

In the future, will be augmenting our merge pro-
cedure to support word-by-word merging instead of
diff3 ’s native character-by-character merging. This

5



change will help users merging HTML documents
involving primarily English text.

We would have liked to also incorporate authenti-
cated client-provided ancestor data and versions dur-
ing conflict detection to support byzantine scenarios.
However, given El Capitan’s exclusively internal cor-
porate use case, we have not prioritized this addition.

References

[1] Cox, R., Josephson, W. File Synchronization
with Vector Time Pairs. Technical Report MIT-
CSAILTR-2005-014, MIT, 2005.

[2] DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., Vogels,
W. Dynamo: Amazons highly available key-
value store. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems prin-
ciples. ACM Press New York, NY, USA, pp.
205–220, 2007.

[3] Housel, B. Node-diff3. Available: https://

www.npmjs.com/package/node-diff3.

[4] Parker, D.S., Popek, G.J., Rudisin, G.,
Soughton, A., Walker, B.J., Walton, E., Chow,
J.M., Edwards, D., Kiser, S., Kline, C. De-
tection of mutual inconsistency in distributed
systems. IEEE Transactions on Software Engi-
neering, 9(3):240–247, 1983.

[5] Terry, D.B., Theimer, M.M., Petersen, K., De-
mers, A.J., Spreitzer, M.J., and Hauser, C.H.
Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Pro-
ceedings of the Fifteenth ACM Symposium on
Operating Systems Principles. ACM Press New
York, NY, USA, pp. 172—182, 1995.

6

https://www.npmjs.com/package/node-diff3
https://www.npmjs.com/package/node-diff3

	Introduction
	Related Work
	Method
	Forgotten Update
	Conflicting Update
	Conflicting Add

	Evaluation
	ACID Properties
	Latency
	Space Complexity

	Conclusion

