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ABSTRACT 
  GFS-python is distributed network 
filesystem written entirely in python. 
There are no dependencies other than 
Python’s standard library.   The goal of 
the project is to become familiar with the 
distributed nature of GFS and 
implement features necessary for its 
intended workload.  To that end, 
GFS-python implements chunk 
replication, server failure resilience, 
multi-chunk read/writes and 
producer/consumer record append 
functionality. 
 
1. DESIGN OVERVIEW 
  There are three major components to 
this project; a master server 
implementation, a chunk server 
implementation, and a client library. 
The client library provides for a way to 
access the filesystem.  Optionally, the 
programmer may use an record-based 
interface that can discard duplicates that 
result from failures that occur at 
secondaries during the atomic append 
operation.  The chunk and master 
server implementations are 
multi-threaded with a RPC interface that 
is similar to what is described in the 
Google’s GFS paper. 
 
2. CLIENT API 
  The client’s interface is centered 
around a file handle object.  The user 

creates the file handle by specifying the 
master server name and a file path. 
Once the file handle is instantiated, the 
user can create and delete the file 
corresponding to the path used during 
object construction.  The user also uses 
this file handle to read, write and 
append.  
  When reading, the user specifies an 
offset within the file and the size of data 
that he wants to read.  The library will 
block until all the data is read or the end 
of file has been reached. If the user 
receives less data than what he 
requested, this means that he has 
reached the end of the file. 
  When writing, the user specifies an 
offset within the file and the data to be 
written.  The user may specify any 
existing offset within the file for a write. 
But it is currently impossible to seek 
past the end of the file for a write unless 
the offset is within a chunk that already 
contains some data. 
  The atomic append works exactly as 
described in Google’s paper.  The size 
of the write has a size limit of 1/4 chunk. 
If the append would exceed the chunk 
size, all replicas are padded, and the 
client library is informed to retry the 
append on the next chunk.  Like read(), 
write() and append() are blocking 
operations.  
 
3. SYSTEM INTERACTIONS 



  The data flow is very similar to what is 
described in Google’s paper.  Clients 
ask for chunk IDs and their 
corresponding location(chunk servers) 
from the master.  
  For writes, the master arranges leases 
with primary chunk servers on a 
per-chunk basis.  There is a global LRU 
cache on each chunk server that stores 
data to be written.  How the write data is 
distributed, and how serial numbers are 
assigned is a bit different in GFS-python 
than Google’s implementation.  For 
simplicity’s sake, the client first sends 
the data to the primary.   In turn, the 
primary assigns a serial number for the 
write, and responds to the client with the 
assigned serial.   The client then sends 
the data directly to all the secondaries, 
along with the serial number.  After this 
point, things return to the standard GFS 
behaviour.  The client instructs the 
primary to write the data.  The primary 
writes the data, tells all the secondaries 
to write the data, and returns the 
outcome of these write attempts to the 
client.   If the client sees a failure, it 
retries. 
  For reads, the client tries all the chunk 
servers for the desired chunk in a 
round-robin fashion until it succeeds. 
The chunk servers ensure that they are 
on the correct version of the chunk 
before responding. 
  For appends, the process begins 
similarly to writes.  Clients distribute the 
chunk to be appended to primary, which 
assigns a serial.  The client then 
transmits the data to all the secondaries. 

The only difference with a standard write 
operation at this point, is that the client 
has not specified an offset within the 
chunk to write. Subsequently, the client 
tells the primary to append by specifying 
the serial number.  As in Google’s 
implementation, the primary ensures 
that there is enough space in the last 
chunk for the append.  If not, it pads the 
last chunk, tells all the secondaries to do 
the same, and informs the client to retry 
the append on the following chunk. 
When there is enough space available 
in the chunk, the primary appends to 
end of the chunk and tells the 
secondaries to write the data at the 
same offset within the chunk as it had 
written to.  Finally, the master replies 
back to the client, telling it whether all 
replicas succeeded in writing the data or 
not,  just as with a standard write 
operation.  This feedback informs the 
client whether it needs to retry or not. 
 
4. CLIENT OPERATION 
  The file handle object holds a cache of 
chunk ID location information which 
helps decrease client to master 
interactions.  When the client detects an 
operation’s failure due to chunk server 
failure, it will refresh its cache in hopes 
of being able to retry and complete the 
operation.  It keeps retrying until it 
succeeds. 
  When reading records, the client 
always attempts to read as much data 
as it can from a chunk.  It caches this 
greedy read opaquely within the handle. 
When the client asks  to read the next 



record, the library first tries to find the 
record in the cached data previously 
read.  If the next record is not found 
within the cache, the client will again 
read as much as it can, and cache it. 
When reading successive records, the 
client library can detect when it has 
reached the end of the chunk.  It will 
then move onto the next chunk. 
  When using the record based 
interface, record data is encapsulated 
within a header which includes a 
beginning of record marker(“BOR\0”), 
the record length, and the record 
checksum.  This, however, does not 
protect clients from seeing duplicate 
records that result from append failures. 
  For clients that cannot cope with 
duplicate records, there is yet another 
interface layered on top of the record 
interface, the de-duplicate record 
interface.  This layer uses sequence 
numbers and producer IDs to discard 
duplicate records.  Producer IDs are 
used in multi-producer scenarios.  The 
idea is to enable multiple independent 
producers to append to the same file. 
The producer IDs allow producer’s 
records to be distinguished from each 
other so that they can be tracked 
independently for the purpose of 
de-duplication.  
 
5. MASTER OPERATION 
  As previously mentioned, the master 
process is the multithreaded RPC 
server.  This means that each RPC 
request is serviced in its own thread to 
allow for concurrency.  The master 

identifies all chunk servers during 
initialization by querying a special DNS 
name, “chunkservers.”   After the set of 
chunk servers has been determined, 
they are queried for all the chunks that 
they own.   This way, the master builds 
the state of all chunk locations during 
initialization.  
  In addition to spawning threads on a 
per-RPC basis, the master runs a thread 
for each chunk server.  These per chunk 
server threads periodically heartbeat 
and collect information about what 
chunks the chunk server holds.  The 
master uses these threads to extend 
leases for primaries as well. 
  There is also a re-replication thread. 
This thread scans all chunks to ensure 
they are at the proper replication level. 
On a per chunk basis, this thread 
checks that all the chunk servers that 
are supposed to hold the chunk 
continue to do so, and are still alive.  If 
not, it will update the version number of 
the chunk, so that writers will be able to 
mutate the chunk.  If it sees that a chunk 
is below the desired system-wide 
replication level, it will take the lease for 
the chunk so that it may be safely 
re-replicated.  Once it has secured the 
lease for the chunk, it instructs available 
chunk server to replicate. 
  During both chunk creation and 
re-replication, the master takes relative 
chunk usage into account when 
selecting a replica for storage.  It 
attempts to balance the amount of 
chunks stored evenly across all 
available chunk servers. 



  The master stores two sets of 
metadata persistently on the disk.  The 
first is chunk metadata, which just 
includes the chunk ID to version 
mapping.  This is stored in an always 
increasing vector.  When chunks are 
deleted, their ID’s on the disk are set to 
-1 to signify they are no longer valid. 
There is no compaction of the log, but 
this could be easily implemented in 
future.  When the master process 
initializes, it reads this chunk metadata 
and store the offset of where each 
chunk lives within the metadata vector 
file in an in-memory data structure.  This 
way, chunk version numbers can quickly 
be updated persistently to disk.  
  The second set of metadata stored on 
disk contains information about all 
existing files, including what chunks 
belong to each file.  The filesystem 
hierarchy is stored within a configurable 
directory.  Each file within GFS is 
represented by actual directories and 
files within this configurable directory. 
So, for example, if the GFS-python 
administrator configures the master 
server to store this metadata at 
/gfs/data, and there was a GFS file with 
path /directoryName/fileName, then 
there there will be a file on the master 
server at location 
/gfs/data/directoryName/fileName, which 
holds all the chunk IDs for that file. 
When the master process initializes, it 
walks the directory for this metadata and 
loads all the file paths and 
corresponding chunk IDs into an 
in-memory data structure for fast lookup. 

 
6. CHUNKSERVER OPERATION 
  Like the master server, the chunk 
server is a RPC server that spawns a 
new thread for each remote call.  Clients 
and other chunks servers make these 
calls.  As with Google’s implementation, 
each chunk is stored in its own file. 
Read and write access to chunks are 
serialized by a per-chunk lock to avoid 
corruption.  Each time a chunk is 
updated, the corresponding chunk’s 
checksum is updated.  These 
checksums are stored persistently on 
disk.  For every read and write 
operation, the checksum of the chunk is 
verified before allowing the operation to 
continue.  If a bad checksum is 
discovered, the chunk is discarded. 
Unlike Google’s implementation, there is 
no background thread that scans 
inactive chunks for bad checksums, but 
that functionality can easily be added in 
the future.  During chunk server process 
initialization, metadata is read from the 
disk to an in-memory data structure 
which holds chunk ID, version and 
checksum information. 
 
7. MEASUREMENTS 
   A test environment was created in 
order to understand the throughput in 
producer/consumer record append 
workloads.  The test infrastructure 
consists of 9 Ubuntu VMs on a freeBSD 
VirtualBox host with an Intel(R) 
Core(TM) i5-4670K CPU @ 3.40GHz. 
Each VM was allocated 1GB of memory, 
100GB of disk, and 1 virtual CPU.  The 



chunk size was set at 32MB and the 
chunk server LRU cache size was 
limited to 128MB.  Of the 9 VMs, 6 acted 
as chunk servers, 2 as clients and one 
as the master.  A producer client 
appends random sized verifiable 
records, while the consumer client reads 
these records.  The consumer client tails 
the producer, reading new records as 
soon as they are available.  It verifies 
that the record contents are correct, 
including an incrementing sequence 
number.  The consumer keeps track of 
the total amount of data received over 
time.  Figure 1 shows the the results. 

 
 
8. FUTURE WORK 
  As the goal was to implement as many 
GFS features as possible and to only 
use the python standard library, many 
performance sacrifices were made. 
CPython’s GIL prevents threads from 
running concurrently.   However, this is 
not too bad, considering that threads are 
I/O bound.  So it seemed desirable to 
move forward with a threaded design to 

compartmentalize functionality and allow 
for multi-chunk concurrency.  
  However, having the master spawn 
one thread per chunkserver does not 
scale.  So, the implementation could 
benefit from more of an event-driven 
approach as opposed to multi-threaded. 
In addition to the scaling benefits of a 
event-driven strategy, locking could be 
simplified or perhaps removed 
altogether. 
  Python’s standard library only provides 
one RPC interface, xmlrpc.  This is a 
poor choice for this application, as huge 
amounts of binary data is being passed 
via RPC.  The binary data is base64 
encoded to be compatible with XML, 
which significantly increases the 
network load.  Python’s standard library 
does include a XDR implementation, but 
no corresponding RPC interface. 
Historically, there was a RPC demo for 
XDR included with CPython’s source, 
but it was removed in early 2011. 
  Python’s threading implementation 
does not include direct support for 
read-write locks.   Although there are 
ample examples on how to create 
read-write locks using locks and 
condition variables, many of them suffer 
from the possibility of writer starvation. 
GFS-python would benefit from 
read-write locks to protect chunk data 
access. 
 
9. CONCLUSIONS 
  GFS-python was created to better 
understand the distributed aspects of 
GFS.  It includes master, and chunk 



server processes along with a client 
library for interacting with the distributed 
filesystem.  GFS-python has achieved 
the goals of implementing multi-chunk 
read/write and multi producer/consumer 
atomic append.  It can also can survive 
chunkserver failures and master 
restarts. 
 


