GFS-python: A Simplified GFS Implementation in Python
Andy Strohman

ABSTRACT

GFS-python is distributed network
filesystem written entirely in python.
There are no dependencies other than
Python’s standard library. The goal of
the project is to become familiar with the
distributed nature of GFS and
implement features necessary for its
intended workload. To that end,
GFS-python implements chunk
replication, server failure resilience,
multi-chunk read/writes and
producer/consumer record append
functionality.

1. DESIGN OVERVIEW

There are three major components to
this project; a master server
implementation, a chunk server
implementation, and a client library.
The client library provides for a way to
access the filesystem. Optionally, the
programmer may use an record-based
interface that can discard duplicates that
result from failures that occur at
secondaries during the atomic append
operation. The chunk and master
server implementations are
multi-threaded with a RPC interface that
is similar to what is described in the
Google’s GFS paper.

2. CLIENT API
The client’s interface is centered
around a file handle object. The user

creates the file handle by specifying the
master server name and a file path.
Once the file handle is instantiated, the
user can create and delete the file
corresponding to the path used during
object construction. The user also uses
this file handle to read, write and
append.

When reading, the user specifies an
offset within the file and the size of data
that he wants to read. The library will
block until all the data is read or the end
of file has been reached. If the user
receives less data than what he
requested, this means that he has
reached the end of the file.

When writing, the user specifies an
offset within the file and the data to be
written. The user may specify any
existing offset within the file for a write.
But it is currently impossible to seek
past the end of the file for a write unless
the offset is within a chunk that already
contains some data.

The atomic append works exactly as
described in Google’s paper. The size
of the write has a size limit of 1/4 chunk.
If the append would exceed the chunk
size, all replicas are padded, and the
client library is informed to retry the
append on the next chunk. Like read(),
write() and append() are blocking
operations.

3. SYSTEM INTERACTIONS



The data flow is very similar to what is
described in Google’s paper. Clients
ask for chunk IDs and their
corresponding location(chunk servers)
from the master.

For writes, the master arranges leases
with primary chunk servers on a
per-chunk basis. There is a global LRU
cache on each chunk server that stores
data to be written. How the write data is
distributed, and how serial numbers are
assigned is a bit different in GFS-python
than Google’s implementation. For
simplicity’s sake, the client first sends
the data to the primary. In turn, the
primary assigns a serial number for the
write, and responds to the client with the
assigned serial. The client then sends
the data directly to all the secondaries,
along with the serial number. After this
point, things return to the standard GFS
behaviour. The client instructs the
primary to write the data. The primary
writes the data, tells all the secondaries
to write the data, and returns the
outcome of these write attempts to the
client. If the client sees a failure, it
retries.

For reads, the client tries all the chunk
servers for the desired chunk in a
round-robin fashion until it succeeds.
The chunk servers ensure that they are
on the correct version of the chunk
before responding.

For appends, the process begins
similarly to writes. Clients distribute the
chunk to be appended to primary, which
assigns a serial. The client then

transmits the data to all the secondaries.

The only difference with a standard write
operation at this point, is that the client
has not specified an offset within the
chunk to write. Subsequently, the client
tells the primary to append by specifying
the serial number. As in Google’s
implementation, the primary ensures
that there is enough space in the last
chunk for the append. If not, it pads the
last chunk, tells all the secondaries to do
the same, and informs the client to retry
the append on the following chunk.
When there is enough space available
in the chunk, the primary appends to
end of the chunk and tells the
secondaries to write the data at the
same offset within the chunk as it had
written to. Finally, the master replies
back to the client, telling it whether all
replicas succeeded in writing the data or
not, just as with a standard write
operation. This feedback informs the
client whether it needs to retry or not.

4. CLIENT OPERATION

The file handle object holds a cache of
chunk ID location information which
helps decrease client to master
interactions. When the client detects an
operation’s failure due to chunk server
failure, it will refresh its cache in hopes
of being able to retry and complete the
operation. It keeps retrying until it
succeeds.

When reading records, the client
always attempts to read as much data
as it can from a chunk. It caches this
greedy read opaquely within the handle.
When the client asks to read the next



record, the library first tries to find the
record in the cached data previously
read. If the next record is not found
within the cache, the client will again
read as much as it can, and cache it.
When reading successive records, the
client library can detect when it has
reached the end of the chunk. It will
then move onto the next chunk.
When using the record based
interface, record data is encapsulated
within a header which includes a
beginning of record marker(“BOR\0”),
the record length, and the record
checksum. This, however, does not
protect clients from seeing duplicate

records that result from append failures.

For clients that cannot cope with
duplicate records, there is yet another
interface layered on top of the record
interface, the de-duplicate record
interface. This layer uses sequence
numbers and producer IDs to discard
duplicate records. Producer IDs are
used in multi-producer scenarios. The
idea is to enable multiple independent
producers to append to the same file.
The producer IDs allow producer’s
records to be distinguished from each
other so that they can be tracked
independently for the purpose of
de-duplication.

5. MASTER OPERATION

As previously mentioned, the master
process is the multithreaded RPC
server. This means that each RPC
request is serviced in its own thread to
allow for concurrency. The master

identifies all chunk servers during
initialization by querying a special DNS
name, “chunkservers.” After the set of
chunk servers has been determined,
they are queried for all the chunks that
they own. This way, the master builds
the state of all chunk locations during
initialization.

In addition to spawning threads on a
per-RPC basis, the master runs a thread
for each chunk server. These per chunk
server threads periodically heartbeat
and collect information about what
chunks the chunk server holds. The
master uses these threads to extend
leases for primaries as well.

There is also a re-replication thread.
This thread scans all chunks to ensure
they are at the proper replication level.
On a per chunk basis, this thread
checks that all the chunk servers that
are supposed to hold the chunk
continue to do so, and are still alive. If
not, it will update the version number of
the chunk, so that writers will be able to
mutate the chunk. If it sees that a chunk
is below the desired system-wide
replication level, it will take the lease for
the chunk so that it may be safely
re-replicated. Once it has secured the
lease for the chunk, it instructs available
chunk server to replicate.

During both chunk creation and
re-replication, the master takes relative
chunk usage into account when
selecting a replica for storage. It
attempts to balance the amount of
chunks stored evenly across all
available chunk servers.



The master stores two sets of
metadata persistently on the disk. The
first is chunk metadata, which just
includes the chunk ID to version
mapping. This is stored in an always
increasing vector. When chunks are
deleted, their ID’s on the disk are set to
-1 to signify they are no longer valid.
There is no compaction of the log, but
this could be easily implemented in
future. When the master process
initializes, it reads this chunk metadata
and store the offset of where each
chunk lives within the metadata vector
file in an in-memory data structure. This
way, chunk version numbers can quickly
be updated persistently to disk.

The second set of metadata stored on
disk contains information about all
existing files, including what chunks
belong to each file. The filesystem
hierarchy is stored within a configurable
directory. Each file within GFS is
represented by actual directories and
files within this configurable directory.
So, for example, if the GFS-python
administrator configures the master
server to store this metadata at
/gfs/data, and there was a GFS file with
path /directoryName/fileName, then
there there will be a file on the master
server at location
/gfs/data/directoryName/fileName, which
holds all the chunk IDs for that file.
When the master process initializes, it
walks the directory for this metadata and
loads all the file paths and
corresponding chunk IDs into an
in-memory data structure for fast lookup.

6. CHUNKSERVER OPERATION

Like the master server, the chunk
server is a RPC server that spawns a
new thread for each remote call. Clients
and other chunks servers make these
calls. As with Google’s implementation,
each chunk is stored in its own file.
Read and write access to chunks are
serialized by a per-chunk lock to avoid
corruption. Each time a chunk is
updated, the corresponding chunk’s
checksum is updated. These
checksums are stored persistently on
disk. For every read and write
operation, the checksum of the chunk is
verified before allowing the operation to
continue. If a bad checksum is
discovered, the chunk is discarded.
Unlike Google’s implementation, there is
no background thread that scans
inactive chunks for bad checksums, but
that functionality can easily be added in
the future. During chunk server process
initialization, metadata is read from the
disk to an in-memory data structure
which holds chunk ID, version and
checksum information.

7. MEASUREMENTS

A test environment was created in
order to understand the throughput in
producer/consumer record append
workloads. The test infrastructure
consists of 9 Ubuntu VMs on a freeBSD
VirtualBox host with an Intel(R)
Core(TM) i5-4670K CPU @ 3.40GHz.
Each VM was allocated 1GB of memory,
100GB of disk, and 1 virtual CPU. The



chunk size was set at 32MB and the
chunk server LRU cache size was
limited to 128MB. Of the 9 VMs, 6 acted
as chunk servers, 2 as clients and one
as the master. A producer client
appends random sized verifiable
records, while the consumer client reads
these records. The consumer client tails
the producer, reading new records as
soon as they are available. It verifies
that the record contents are correct,
including an incrementing sequence
number. The consumer keeps track of
the total amount of data received over
time. Figure 1 shows the the results.

Figure 1
14000

12000

10000

8000

6000

total data read in MB

4000

2000

0 500 1000 1500 2000 2500 3000 3500 4000

elapsed time in seconds

8. FUTURE WORK

As the goal was to implement as many
GFS features as possible and to only
use the python standard library, many
performance sacrifices were made.
CPython’s GIL prevents threads from
running concurrently. However, this is
not too bad, considering that threads are
I/O bound. So it seemed desirable to
move forward with a threaded design to

compartmentalize functionality and allow
for multi-chunk concurrency.

However, having the master spawn
one thread per chunkserver does not
scale. So, the implementation could
benefit from more of an event-driven
approach as opposed to multi-threaded.
In addition to the scaling benefits of a
event-driven strategy, locking could be
simplified or perhaps removed
altogether.

Python’s standard library only provides
one RPC interface, xmirpc. Thisis a
poor choice for this application, as huge
amounts of binary data is being passed
via RPC. The binary data is base64
encoded to be compatible with XML,
which significantly increases the
network load. Python’s standard library
does include a XDR implementation, but
no corresponding RPC interface.
Historically, there was a RPC demo for
XDR included with CPython’s source,
but it was removed in early 2011.

Python’s threading implementation
does not include direct support for
read-write locks. Although there are
ample examples on how to create
read-write locks using locks and
condition variables, many of them suffer
from the possibility of writer starvation.
GFS-python would benefit from
read-write locks to protect chunk data
access.

9. CONCLUSIONS

GFS-python was created to better
understand the distributed aspects of
GFS. Itincludes master, and chunk



server processes along with a client
library for interacting with the distributed
filesystem. GFS-python has achieved
the goals of implementing multi-chunk
read/write and multi producer/consumer
atomic append. It can also can survive
chunkserver failures and master
restarts.



