
RAMBLE: Reliable Asynchronous Messaging for
Byzantine Linked Entities

Mohammad Imam
noahi@stanford.edu

Sahil Takiar
stakiar@stanford.edu

Jingkui Wang
jingkui@stanford.edu

Abstract—The RAMBLE protocol provides a de-
centralized, censorship resistant, Twitter style, public
messaging system. Unlike blockchain based messaging
which requires expensive proof of work computations,
RAMBLE achieves eventual consensus through explicit
reconciliation using conflict-free data types. RAMBLE
utilizes established distributed P2P techniques, such as
gossip and epidemic dispersion, which provide a pre-
cise threat model proving high probability of message
delivery. Additionally, this paper explores Byzantine
failure mitigation techniques and provides scalability
and performance analysis of our implementation of the
protocol.

I. Introduction

An effective decentralized messaging service needs high
availability, censorship resistance, and fault tolerance. Dis-
tributed Byzantine fault tolerant (BFT) systems [1], have
demonstrated that public ledgers can be used to store
arbitrary data. In order to provide strict data safety, im-
plementations of such systems, such as blockchain, require
multiple confirmations through expensive proof of work
(PoW) calculations [2, 3]. Unlike stores of value that vali-
date through ordered transactions, messages are inherently
independent and can be effective without requiring strict
data safety and ordering. By utilizing speculative confir-
mation (0-confidence), messages can be externalized faster
without guaranteeing consensus. In the event a message
is lost, it can be rebroadcast without causing conflicting
outcomes.

We discuss an architecture to build a highly available,
BFT, low latency, censorship resistant message ledger.
This system includes mutable asynchronous digest blocks
and a message datastore. The digest block records a
count of confirmations for a particular set of committed
message digests. The datastore maps digests to their mes-
sage content. Independent messages, stored as conflict-
free replicated data types (CRDT), allow consistent set
reconciliation without requiring external coordination [4].
Backlog messages can be stored temporarily and deleted if
they are not confirmed within a certain threshold period
(described later in this paper). Messages are idempotent
and can be rebroadcast without any adverse impact. Mes-
sage storage relies on the assumption that a large enough
subset of participating nodes will altruistically store data.
Since message storage is not enforced by the network,
failure by clients to store message data violates strict data
safety.

Based on pageview and submission stats reported by

Reddit in 2015, the ratio of reads to writes is approxi-
mately 100:1. In our protocol, each message is limited to
255 characters and is at most 512 bytes with metadata. If
we extrapolate the Reddit model, 200 million users would
share 700 million messages per year which would require
close to 360 GB of [5]. For a single month, only 30 GB
of storage would be required. By optimizing data storage
using sharding with 1000x replicas, distributing among 200
million users would result in 1.8 MB of storage per user.
Assuming only 10% of users are altruistic, it is still less
than 20 MB of storage per user.

The popularity of peer-to-peer (P2P) systems, such
as BitTorrent, has shown that access to idle compute
power and storage capacity between 100 GB to 1000 GB
is commonly available, and that end users are willing to
donate these resources for a system they are invested in.
However, network connectivity and bandwidth are not as
abundant and reliable. By utilizing idle compute power and
data storage, and optimizing for sparse network connec-
tivity, we demonstrate a censorship resistant decentralized
distributed forum, tolerant of Byzantine failures without
expensive PoW requirements.

We present Reliable Asynchronous Messaging for
Byzantine Linked Entities (RAMBLE), a censorship resis-
tant distributed messaging protocol. Centralized forums,
such as Twitter and Reddit, are subject to censorship and
can experience availability issues such as 503 errors during
peak times. Smaller forum communities, often running
on a single server, are subject to DDoS attacks and are
not reliable during host disruptions. RAMBLE prioritizes
high availability and fault tolerance by replicating message
state on each participating client and relaxing data safety.
Although safety is crucial for blockchain transactions
containing financial information, a messaging system can
continue operating having lost a small percentage messages
without disrupting most users.

Section II of the paper discusses the design and im-
plementation of RAMBLE, including our anti-entropy al-
gorithm and message dissemination protocol. Section III
describes a precise threat model that bounds the prob-
ability that messages are successfully delivered to non-
malicious clients, as well as how RAMBLE guards against
various Byzantine failures. In Section IV, we present our
performance evaluation and show that RAMBLE’s proto-
cols work in traditional P2P settings. Section V and VI
describe future and related work, and we summarize our
findings in Section VII.



II. Design and Implementation

The RAMBLE protocol utilizes a locally stored
database, a node membership system, a gossip-based epi-
demic protocol, and an anti-entropy mechanism. A tradi-
tional anti-entropy implementation applies the following
steps: 1) A client periodically pairs with another client, 2)
the clients exchange history and reconcile differences, and
3) clients terminate communication at which point they
both reflect the same set of data [15]. We chose a hybrid
approach involving an optimistic epidemic dissemination
protocol and an infrequent periodic anti-entropy system
to ensure eventual consistency. Epidemic dissemination is
ideal for sharing a limited data set, such as new messages,
and provides a bounded worst-case network load. Anti-
entropy is ideal for comparing history and reconciling
CRDT sets.

Considering that conversations are temporal in nature,
the message schema preserves a weak temporal ordering.
Although the protocol itself is asynchronous, each message
contains a timestamp set by the sender so that clients
can better visualize messages and confirm basic sanity
checks. A network connected device has access to a time
service that is within an hour of accuracy with respect
to other nodes on the network. The messaging service
verifies that new messages are not backdated past a 24
hour threshold and are not impossibly dated in the future.
Additionally, there is a critical invariant check based on
timestamps: a message reply cannot have a timestamp less
than the timestamp of its parent digest. A parent digest
is a reference to the parent message of a reply. If a parent
digest is null, the message is considered a top level thread.
In the event a message has a later timestamp then the
current time, a client is expected to update their clock
such that any reply is later than the parent or it should
reject the message as invalid.

We define the following nomenclature:

• Node: A container running the RAMBLE software
stack with an on disk embedded database

• Client: A frontend interface allowing user to post
messages and view received messages

• Fingerprint: A unique client identifier composed
of an IP address and public-key shared via a
federated exchange

• Message: A signed data type of string data, times-
tamp, parent digest, and fingerprint

• Fanout: The number of random peers per message
broadcast

• Filter: A set of rules which determine message or
sender validity

• Digest: A hash taken over an unsigned message,
the fingerprint of the sender, and the timestamp of
the message

The key design choice in RAMBLE involves separating
the peer-to-peer synchronization tasks as multiple asyn-
chronous services. Each service provides an asynchronous

queue to pipeline inputs and forward outputs to another
service. To ensure data integrity, all messages are signed by
the author, preventing a client from impersonating another
client. This improves performance and reduces Byzantine
attack vectors by limiting the scope of any single pairwise
exchange.

When a node joins the network, it presents a unique
fingerprint, determined by a mapping between its public-
key and IP address. Nodes without any prior history utilize
a bootstrap bulk-message protocol which allows a peer to
forward their digest block history and contents of their
local database to the new node. RAMBLE ensures data
integrity by requiring that all messages are signed and
verified using the sender’s public-key. This ensures that
messages cannot be modified by Byzantine actors without
exposing their fingerprint on the message. RAMBLE uti-
lizes fingerprinting in the various asynchronous services to
determine whether a node exhibits Byzantine behavior.

Implementations Details: The RAMBLE implemen-
tation is written in Java and is publicly available on
Github [12]. Users can interact with a RAMBLE client
via a command line interface (CLI), a simple UI based
on the Spark Web Framework, or as an embedded Java
application. Network objects are efficiently serialized using
Google Protobuf. All network communications are done
using Netty, an asynchronous, event-driven network library
for Java. Netty was chosen instead of a generic remote pro-
cedure call framework because it optimizes asynchronous
network communication. All messages and metadata are
stored locally in H2, an embedded Java SQL database.
Apache Gossip is an open-source implementation of a
generic gossip based protocol, mainly geared towards fail-
ure detectors. While it features integration for sharing
CRDTs, the reconciliation implementation is inefficient.
Thus, we decided to use it purely for RAMBLE’s mem-
bership service. The core class in RAMBLE is composed
of a set of services, each responsible for a different part of
the protocol. These services are discussed below.

A. Bootstrap Protocol

When a new node starts up, it must specify a known-
valid peer to connect to. The new node will connect to this
peer and download all its messages as well as any metadata
necessary for all the other services to run. Once this has
complemented, the new node sets its status to ‘UP’ and
joins the membership cluster via the initial peer. At this
point, the node is fully able to interact will other peers in
the cluster and can start posting its own messages.

B. Membership Service

After the bootstrapping protocol has completed, nodes
must join a membership service so they can discover, and
be discovered by, other RAMBLE peers. New nodes first
share their public-key and IP address with a predetermined
set of peers. One of the peers will respond with a set
of other nodes available in the network. The membership
service maintains an up-to-date list of reachable peers that
can participate in the epidemic protocol. The membership
list is shared using the Apache Gossip protocol. Apache

2



Gossip allows a group of nodes to discover and periodically
check the liveliness of a cluster. In addition, the service
includes metadata containing the public-key of the node.
Liveness checks are done by receiving heartbeat updates
from each peer. If a peer fails to broadcast a heartbeat
within a threshold period, it is excluded from the peer list
and must re-initiate membership. The failure detector used
in Apache Gossip is based on accrual failure detectors [6].
All messages are sent via UDP.

Fig. 1. Epidemic Broadcast Service with Fanout = 2. Node 1 posts
the message “Hello” and broadcasts it to nodes 2 and 3. Both nodes
2 and 3 re-broadcast the message since they have not broadcasted
the message yet. When node 1 receives the message again it drops
it because it has already broadcasted it once before. A fanout = 2
means each node will broadcast a message to two random peers.

C. Epidemic Broadcast Service
Algorithm 1 demonstrates that unlike the periodic

round based gossip protocol in Apache Gossip, the epi-
demic broadcasting service utilizes a message queue to
simultaneously broadcast to multiple nodes. The Netty
based peer broadcast service uses TCP to ensure that a
peer receives a message without data corruption. When
a client posts a new message or receives a message not
previously broadcasted, it is added to the message queue.
The broadcasting service reads from the queue and sends
the message to a configurable number of peers. Once a
message is successfully disseminated, its digest is added to
an ignore list, terminating the epidemic gossip locally for
that message.

Algorithm 1: Epidemic Broadcasting Service
1 while dequeue(message) do
2 for i = 1 to FANOUT do
3 do
4 Node n = get random peer()
5 while !broadcast message(n)
6 end
7 enqueue commit(message)
8 ignore message(message.get digest())
9 end

D. Anti-Entropy Service
Random peer selection for individual messages does

not guarantee that every node will receive every message.
Instead, the anti-entropy service supplements the epi-
demic broadcasting service by periodically verifying digest
history and reconciling digest blocks. Digest blocks are

Fig. 2. Anti-Entropy Service: this figure shows a multi-threaded
asynchronous anti-entropy implementation. Node 2 performs anti-
entropy with Node 1 to determine the set of missing message digests
for a particular timestamp range. The dotted lines show the algorithm
repeating between the MAX and MIN TS range. The horizontal lines
connecting the two ‘Node 2’ threads show message digests being sent
to a queue and message data being served by Node 3. Node 2 can
contact an arbitrary number of other nodes to reconcile the missing
messages.

determined by querying a set of message digests between
a predetermined range of timestamps. Each node keeps a
count of the number of times a particular digest block has
been verified. When this number passes a set threshold,
messages mapped to the digests contained within the block
are considered committed. Although the digest block is
permanently mutable due to the nature of CRDTs, the
client will not actively attempt to reconcile a block after
it has been committed.

Algorithm 2: Anti-Entropy Service
1 Function anti entropy(Node n, verified ts n)
2 ts end = get max ts span(verified ts n)
3 current ts = get current ts()
4 while current ts > ts end do
5 set digests = get digest block(current ts);
6 cache.put(digests);
7 send block(n, digests)
8 current ts = current ts.get next()
9 end

10
11 Function on recv block(block ts, digests)
12 set digests = compute complement(digests,

cache.get(block ts))
13 enqueue message needed(digests)

E. Client Filtering
Client-side filtering is done to protect against spam

posted by malicious users (more details are discussed in

3



the next section). The client filter blacklists a particular
node if it has sent an excessive number of messages within
a configurable timeframe. Nodes are identified by their
fingerprint, which is a combination of its IP address and
public key.

III. Threat Model

Byzantine fault tolerance introduces various attack vec-
tors uncommon in centralized systems. In this section, we
will explore various vulnerabilities we have identified and
solutions to mitigate their impact. The RAMBLE design
parameters are chosen based on a probabilistic approach
that minimizes average expected failure such that 99.5% of
messages disperse to at least a single non-faulty node when
less than 50% of all nodes exhibit Byzantine behavior.
Since the anti-entropy algorithm runs in perpetuity, as
long as a single non-faulty node receives a message, it
will continue to propagate to other non-faulty nodes. For
N nodes, F Byzantine actors, and a fanout parameter C,
we characterize the average expected value that a valid
message will propagate to at least one non-faulty node.

prob(m) = 1 − F

N − 1
F − 1
N − 2 ...

F − C + 1
N − C

= 1 −
C∏

i=1

F − C + 1
N − C

F = N

2 − 1, for large N, ≈ 1
2

C

Choose C s.t. prob(m) > 0.995,

prob(m) = 1 − 1
2

8

= 0.99609375, C = 8

Public forums do not have the same incentives as other
BFT systems such as cryptocurrency. For most applica-
tions, there is no financial gain from attacking a messaging
system. Although a coordinated attack could prevent a
particular node from communicating messages with the
rest of the network, it must be sustained in perpetuity
otherwise the node can rebroadcast the messages and
overcome censorship. Moreover, like any centralized forum,
RAMBLE is susceptible to a coordinated set of messages
that aim to portray a particular view or influence user
opinions.

A. Protocol Dynamic Denial of Service

The APIs used to request messages, sync history, and
perform anti-entropy tasks expose a dynamic denial of ser-
vice (DDoS) attack vector. A coordinated set of Byzantine
nodes can concentrate requests to a set of non-faulty nodes,
starving the network stack of the affected nodes from from
performing epidemic gossip and anti-entropy. To mitigate
this attack vector, nodes enforce per fingerprint and global
API rate limits. Nodes that are rejected by their pairwise
member are encouraged to find a new random node to
ensure progress.

B. False Data Flooding
Flooding spam, indistinguishable from a valid message,

can ‘drown’ authentic messages from being seen. Spam is
not unique to decentralized systems, large centralized sites
such as Reddit and Twitter experience a high volume of
automated accounts that create content based on trigger
words. RAMBLE enforces client side filtering with a set
of rules to prevent any particular node from spamming
messages. The fingerprint restriction, which pairs an IP
address with a public-key, has a significant deflationary
impact on spam. Additional detection strategies, though
not implemented, may including bayesian filters on key-
words, machine learning on spam data sets, and clients
manually reporting violating messages. Another example
of a fake data attack can involve a faulty node withholding
valid messages. Using the same probabilistic argument for
fanout, we show that as long as a node can eventually
engage in a pairwise exchange with a non-faulty node, they
will eventually see all valid messages.

C. Sybil Attack
Sybil attacks rely on forging multiple identities possibly

sharing the same IP address in a peer-to-peer network
[7]. RAMBLE relies on the notion that IPV4 addresses
are scarce compared to the number of non-faulty nodes
participating in the system. The fingerprint system pre-
vents mapping an arbitrary number of public-keys per IP
address, thus allowing clients to mitigate the attack by
banning bad actors. Additionally, since RAMBLE does not
rely on voting, pseudonyms have limited influence on the
network.

IV. Evaluation
A. Test Environment

The test setup includes three virtual machines across
the U.S. Central, U.S. East and U.S West regions on the
Google Compute Engine (GCE). Each VM is equipped
with 24 virtual CPUs, 156 GB of memory and 10 GB of
persistent storage. The VMs are configured with Ubuntu
16.04 and Docker CE to help simulate running multi-
ple RAMBLE instances. A Docker Swarm, running a
containerized RAMBLE instance, simulates a network of
clients connected by an overlay network. During all tests,
the ping latency between the Docker instances on the
same VM is less than 1ms, while the latency between
machines is 36ms. The containerized RAMBLE instance is
based on Ubuntu and OpenJDK 8. The networking stack
requires iproute2, inotify-tools, and net-tools. The Docker
containers map to a shared volume where all messages,
sent and received, are logged. We monitor individual client
behavior by using docker container attach to interact with
a particular client instance and to send out test messages.
Each test includes a total of 96 RAMBLE instances which
run a set of scripts that generates messages and collects
logs from each VMs.

B. Test Results
Figure 3 shows a network delay test where we use tc to

artificially add delay to network traffic. The test measures

4



Fig. 3. A network delay test where network packet delivery between
RAMBLE clients is delayed a variable amount

the time it takes for a message from a single client to prop-
agate to all other clients. The horizontal axis marks the
percentage of clients that have received the message and
the vertical axis shows the duration in milliseconds. The
data points on the curve show insignificant performance
impact from a 10ms to 20ms network delay. The latency
begins to grow when we scale the network delay to 100ms.
Finally, when we set a really aggressive 2 second delay,
we encountered a latency of around 30 seconds. The goal
of this experiment is to analyze the performance of our
epidemic dissemination protocol in the face of extended
network delays, which can be common when working with
asynchronous clients in P2P systems.

Fig. 4. A message size test where RAMBLE clients post message
streams of variable sizes

Figure 4 shows the delivery latency for different mes-
sage stream sizes. A message stream is a group of messages
that are serialized and disseminated together. The results
are similar to the network delay test. When the message
stream is small (1k, 2k, 4k), we don’t see much impact on
the latency. When it increases to a total size of 8KB, the
latency has a visible increase.

In the fanout test, we set the fanout parameter for the
epidemic dissemination protocol to measure how long it
takes for a certain percent of clients to receive all messages.
As the results show, the latency of the two setups are

Fig. 5. Testing message propagation latency for different fanout
values with no faulty nodes.

not significantly different. In fact, Fanout 4 shows faster
propagation latency than Fanout 8 for a large portion
of the message propagation lifetime. We believe this is
due to network variance being greater than the confidence
from using a limited number of RAMBLE clients. Since
latency within the same machine is significantly smaller
than machines in the other regions, the random selection
also introduces significant variability in our measurements.

C. Analysis and Limitations
We evaluate RAMBLE based on its ability to scale,

provide high availability, and deliver messages in a timely
manner when operating in a P2P environment. These tests
show that RAMBLE can operate over a WAN where nodes
are geographically distributed across different data centers.
Furthermore, the tests demonstrate that RAMBLE’s mes-
sage propagation is resistant to artificial network delays
and large message payloads. Although we expect these
results to scale with nodes count, the tests were only
conducted on 96 RAMBLE instances.

The Google Cloud Engine limited the number of VMs
we could use, which prevented our instances count from
being orders of magnitude greater than our fanout size,
which is needed to overcome variance introduced by the
random epidemic dissemination protocol. We intended to
spin up thousands of RAMBLE instances, but were limited
by JVM and Docker resource consumption. To prevent
overloading the vCPU, we limited our instance count to
96 which is insufficient for testing the impact of the fanout
choice.

Since nodes sharing an individual VM share the same
Docker volume, we noticed decreased write performance
caused by multiple clients writing to H2 at the same time,
creating disk resource contention. We expect that with a
better storage solution, our high message size test should
yield a significantly better performance matrix.

The timings reported in each test should not be taken
as an accurate representation of real-world message deliv-
ery time. Our setup requires running an extensive number
of Docker images inside a single virtual machine, which is
not a realistic representation of how actual clients would

5



use RAMBLE. However, we feel the tests are still useful to
comparatively show the difference in message delivery la-
tency when run on diverse networks, with variable message
sizes, and with different fanout values.

V. Improvements
Network Routing Random peer selection introduces

increased network latency. An overlapping set of local-
ized clients would result in a more efficient dissemination
protocol. A distributed DNS server similar to Coral DNS
[8] would reduce round trip latency and improve overall
system availability due to its load balancing features.

Storage RAMBLE stores all messages on a single
machine instead of sharding across multiple nodes, limiting
the number of messages that can be retained in the system.
Storing data in a Distributed Hash Table (DHT) would
work well in our current model. Nodes can only store
the newest messages in their database and can selectively
purge older messages that they are less interested in. This
requires a routing implementation that allows clients to
perform message lookups either by digest or by timestamp
range. In addition, other storage optimizations such as
archiving older messages in GZIP files should be explored.

Performance We hope to do further performance
studies on RAMBLE using real-world workloads, such as
Twitter’s Streaming API [9]. Our performance numbers
were limited by cost issues and resource limitations on the
GCE infrastructure. We expect a more representative set
of performance graphs as the number of clients in a cluster
increase. Furthermore, we hope running with a higher
number of instances will allow us to stress test other parts
of the implementation, such as the efficacy of our anti-
entropy algorithm and the scalability of Apache Gossip.
One dimension we have not tested yet is RAMBLE’s ability
to withstand Byzantine clients and coordinated attacks.

Reputation System A reputation system could be
built into RAMBLE to help distinguish between malicious
and normal users. Reputation and trust management in
P2P networks is an active area of research [13, 14], and
many of the published algorithms can be extended to
RAMBLE. Reputations can be assigned based the unique
fingerprint that identifies each client. The system can help
clients identify bots in the network that are attempting to
flood spam to other nodes.

VI. Related Work
There have been a number of attempts to use

blockchain technology to implement a decentralized mes-
saging platform [3]. While these systems have stronger
safety guarantees, they sacrifice latency due to excessive
time spent on PoW. Most users of a messaging system
expect near real-time (bounded latency) message propaga-
tion. Message commit delay of minutes, waiting for block
confirmation, is not acceptable for a public forum.

Gossip is a widely studied protocol with a variety of
use cases. We leverage work done on gossip algorithms for
failure detectors [6, 10]. A closely related area of gossip
protocols, is epidemic dissemination protocols that are

used to quickly spread information from a given node [11].
Our broadcast service closely mirrors this style of protocol.

CRDTs are data containers that can reconcile differ-
ences and are guaranteed to provide eventual consensus
given commutative concurrent updates [5]. We utilize
CRDTs to share and reconcile message digest history
sets. We define messages as independent and idempotent
transactions to the overall state of the system, making
them ideal for CRDTs.

VII. Conclusion
This paper has described the architecture and imple-

mentation of RAMBLE, a censorship resistant distributed
public messaging system, utilizing a unique combination
of gossip, epidemic dissemination, and anti-entropy pro-
tocols. We propose a formal threat model which defines
the probability that a message will fail to propagate to
any non-faulty node. Additionally, we provide analysis on
various common Byzantine threats and comment on the
level of safety in the system.

RAMBLE provides configurable and predictable
bounded network throughput which scales with the
number of nodes present in the system. We make the
case for utilizing idle compute and altruistic message
storage based on the wide usage of P2P networks such
as BitTorrent. Our performance evaluation demonstrates
that RAMBLE is suitable for operating across wide-area
networks where nodes are geographically distributed
and sparsely connected. Moreover, the results show that
message dispersion latency scales effectively with node
fanout indicating high availability.

References
[1] Miguel Castro et al. “Practical Byzantine Fault Tolerance”.

OSDI. 1999
[2] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash

System”. 2008
[3] Jonathan Warren. “Bitmessage: A Peer to Peer Message Au-

thentication and Delivery System”. 2012
[4] Reddit in 2015 https://redditblog.com/2015/12/31/reddit-in-

2015/
[5] Marc Shapiro et al.“Conflict-Free Replicated Data Types”. Sta-

bilization, Safety, and Security of Distributed Systems, 2011
[6] Naohiro Hayashibara et al. “The φ Accrual Failure Detector”.

Japan Advanced Institute of Science and Technology. 2004
[7] John R. Douceur. “The Sybil Attack”. IPTPS. 2002
[8] Michael J. Freedman et al. “Democratizing content publication

with coral”. NSDI. 2004
[9] The Twitter API https://developer.twitter.com/

[10] Robbert van Renesse et al. “A Gossip-Style Failure Detection
Service”. Proceedings of Middleware. 1996

[11] Anne-Marie Kermarrec et al. “Reliable probabilistic communi-
cation in large-scale information dissemination systems”. Tech-
nical Report. Microsoft Research. 2000

[12] Reference Implementation https://github.com/noah-/ramble
[13] Sepandar D. Kamvar et al. “The EigenTrust Algorithm for

Reputation Management in P2P Networks.” ACM. 2003
[14] Yao Wang et al. “Trust and reputation model in peer-to-peer

networks.” IEEE. 2003.
[15] Douglas B. Terry et al. “Managing update conflicts in Bayou,

a weakly connected replicated storage system.“ SIGOPS. 1995.

6


