MochiDB: A Byzantine
Fault Tolerant Datastore

Tigran Tsaturyan
Saravanan Dhakshinamurthy

1. BFT KeyValue datastore

(read(k), write(k,v), delete(k))
Consistent

Supports transactions

In-built sharding

Optimized for reads and writes over
WAN

Description

a bk own

Database to store configurations for
infrastructure.

e Most infrastructure as key -> value

e Need to update multiple props together

e Infrastructure needs to be consistent

e Located in different part of the world (next

slide)

140 ms

IRELAND BEWJING
' FRANKFURT
OHIO (Coming soon) O SEOUL
OREGON _ :
A O - UK (Coming soon) O
N. CALIFORNIA NINGXIA {Goming_ soon) 8
N. VIRGINIA TOKYO

AWS GOVCLOUD

INDIA (Goming soon) O

SINGAPORE

110 ms

SAO PAULO 21 0 L
Region & »

Number of Availability Zones SYDNEY

New Region
Coming Soon

Source: Amazon AWS + https://wondernetwork.com/pings

https://wondernetwork.com/pings

Architecture

1.

Quorum Based BFT
Client is a
coordinator for
transaction
Transactions can be
two types - READ and
WRITE

Min server
requirement - 3f + 1

Client 1

Client X

LN

BFT Read

objectX

1. Value

2. WriteCertificate
3. Timestamp (TS)
4. ...

objectY

1. Value

2. WriteCertificate
3. Timestamp (TS)
4. ...

S

Transaction

Transaction result

“‘How that object
happens to be
that way”
(Signed
confirmations
from the servers)

client

serveri

N

server2

server3

server4

BFT Write:
Protocol
view

objectX

objectY

1. Value
2. WriteCertificate
3. Timestamp (TS)

1. Value

3. Timestamp (TS)

2. WriteCertificate —~———

Collection of grants
(object, timestamp,

4- ----- 4- ----- trHaSh)
Transaction + Server grants WriteCertificate -
Random seed client to write collection of grants
(0-1000) object at some TS || from 2f+1 servers
client \ \ \
Acks that transaction
was performed
S \V/AR\Y/
NSERYERY/E
server3 5 : 5 : 5

server4

Transaction 1

Order
TR1 TR2
Write1 Write1
Transaction 2
Write2
WRITE(“ObjectX”, “48”)
. RAND_seed = 467 Write2
BFT Write:
Server Epoch for current state of the object Epoch for current state of the object
processing (COMMITTED) (COMMITTED)
Ol eeochs EpochA= 5000 Epoch A= 6000

[|

_—

Current object TS = 5334

Current object TS = 6315 —‘

Current object TS = 6467
Write1 grant for TR2 | time

Sharding:

1024 tokens equally spread across the ring and
assign to servers. Data is replicated
(replicationFactor) on the Nth subsequent servers
GC:

Need to cleanup old write grants that are never
fulfilled. Server initiates GC, get agreement on object
TS, prune non needed data

Permissions:

Client have READ, WRITE, ADMIN permissions
embedded into its certificate

Configuration changes:

Similar to 2PC

more....

Implementation

e Java/Netty/ProtoBufs/Spring
e In-memory object store (for now)

Engineering Lessons learned
e AsynclO, AWS fees

e Full cluster within JVM and testing framework

e Releasing resources

e Concurrent operations

e Do not make presentation in google docs :)
Testing

e See paper
e Local: 6ms -50%, 20 ms - 99% - READS; 16 ms - 50%, 60 ms -
99% WRITES

THANK YOU!

Ready to run images
https://hub.docker.com/r/mochidb/mochi-db/
Source code (48,310 lines of code):
https://github.com/saravan2/mochi-db

Conclusion

CONTRIBUTIONS APPRECIATED!

https://hub.docker.com/r/mochidb/mochi-db/
https://github.com/saravan2/mochi-db

Mochi

