
MochiDB: A Byzantine
Fault Tolerant Datastore

Tigran Tsaturyan
Saravanan Dhakshinamurthy

Description

1. BFT KeyValue datastore
(read(k), write(k,v), delete(k))

2. Consistent
3. Supports transactions
4. In-built sharding
5. Optimized for reads and writes over

WAN

Use case

Database to store configurations for
infrastructure.
● Most infrastructure as key -> value
● Need to update multiple props together
● Infrastructure needs to be consistent
● Located in different part of the world (next

slide)

Source: Amazon AWS + https://wondernetwork.com/pings

140 ms

210 ms

110 ms

https://wondernetwork.com/pings

Architecture

1. Quorum Based BFT
Client is a
coordinator for
transaction

2. Transactions can be
two types - READ and
WRITE

3. Min server
requirement - 3f + 1

BFT Read

1. Value
2. WriteCertificate
3. Timestamp (TS)
4. …..

objectX

1. Value
2. WriteCertificate
3. Timestamp (TS)
4. …..

objectY

client

server1

server2

server3

server4

“How that object
happens to be
that way”
(Signed
confirmations
from the servers)

Transaction Transaction result

BFT Write:
Protocol
view

1. Value
2. WriteCertificate
3. Timestamp (TS)
4. …..

objectX

1. Value
2. WriteCertificate
3. Timestamp (TS)
4. …..

objectY

client

server1

server2

server3

server4

Collection of grants
(object, timestamp,
trHash)

Transaction +
Random seed
(0-1000)

Server grants
client to write
object at some TS

WriteCertificate -
collection of grants
from 2f+1 servers

Acks that transaction
was performed

BFT Write:
Server
processing

time

Old epochs Epoch = 5000 Epoch = 6000

Current object TS = 5334

WRITE(“ObjectX”, “12”)
RAND_seed = 315

Transaction 1

WRITE(“ObjectX”, “48”)
RAND_seed = 467

Transaction 2

Write1 grant for TR1

Write1 grant for TR2

TR1 TR2

Write1 Write1

Write2

Write2

Order

Epoch for current state of the object
(COMMITTED)

Epoch for current state of the object
(COMMITTED)

Current object TS = 6315

Current object TS = 6467

Features

● Sharding:
1024 tokens equally spread across the ring and
assign to servers. Data is replicated
(replicationFactor) on the Nth subsequent servers

● GC:
Need to cleanup old write grants that are never
fulfilled. Server initiates GC, get agreement on object
TS, prune non needed data

● Permissions:
Client have READ, WRITE, ADMIN permissions
embedded into its certificate

● Configuration changes:
Similar to 2PC

● more….

Engineering

Implementation
● Java/Netty/ProtoBufs/Spring
● In-memory object store (for now)

Lessons learned
● Async IO, AWS fees
● Full cluster within JVM and testing framework
● Releasing resources
● Concurrent operations
● Do not make presentation in google docs :)

Testing
● See paper
● Local: 6ms -50%, 20 ms - 99% - READS; 16 ms - 50%, 60 ms -

99% WRITES

Conclusion

THANK YOU!

Ready to run images
https://hub.docker.com/r/mochidb/mochi-db/
Source code (48,310 lines of code):
https://github.com/saravan2/mochi-db

CONTRIBUTIONS APPRECIATED!

https://hub.docker.com/r/mochidb/mochi-db/
https://github.com/saravan2/mochi-db

Mochi

