
MochiDB : A Byzantine Fault Tolerant Datastore

Tigran Tsaturyan
Stanford University

Saravanan Dhakshinamurthy
Citrix Systems

Abstract
In this paper we would like to present MochiDB - a
consistent, high volume, distributed datastore which is
Byzantine fault tolerant. MochiDB supports native trans-
actions and uses BFT quorum protocol with random
write seeds that requires only two round trips for writes
and one for read which gives it low latency over WAN
deployments. This paper puts focus on engineering so-
lutions that minimize the cost of contention resolution,
sharding, dynamic configuration changes, garbage col-
lection and others.

1 Introduction

When designing MochiDB we were pursuing the use
case of having consistent key-value datastore located
within data centers around the globe supporting large
volumes of data and transactions. We builtin Byzantine
fault tolerance (BFT) support so that the system can re-
main consistent even if some nodes are malicious or have
failed arbitrarily. Our concrete application was a infras-
tructure manager which centrally contains configurations
for servers, VMs, docker images, site certificates, pass-
words, etc - i.e. everything that is read more often that is
updated. Such information need to be consistent because
small divergence can cause misconfigurations of the in-
frastructure and failures. We provide transaction support
as very often multiple items are updated together.

2 System Overview

MochiDB consists of clients and servers that contain the
distributed database where data is stored. We represent
data as a key-value store, where to some string ’K’ is as-
signed some string value ’V’. We do not put any limit
on key and value length, but our expectations are that
keys are less than 80 characters long and data can be up
to dozen Mb. MochiDB works only on string key and

Table 1: MochiDB client operations

Operation Input arguments Result Meaning
READ Key Current value Read data mapped to key
WRITE Key, New value Old value Write new data to key
DELETE Key Old value Delete data for key

string values. Every read and write for an object has to
be encapsulated as a transaction. Clients execute trans-
actions across servers to access data for read and write.
Each transaction consists of a list of operations. Each op-
eration can be READ, WRITE or DELETE. Table 1 on
page 1 describes their meaning.

A Transaction in MochiDB is guaranteed to be ex-
ecuted atomically. However, the transaction cannot be
rolled back and the effects can be undone only via a sep-
arate transaction. Clients nudge slow servers to resync
objects that were found to be stale during a transaction.

Communication between participants (clients and
servers) occurs via messages. MochiDB employs key au-
thentication to guarantee that messages originated from
the stated senders. The entire communication channel
used for messages, data can be encrypted using TLS at
the transport layer.

MochiDB is built to tolerate byzantine failures. The
relationship between number of robust servers and num-
ber of faulty servers (or faulty replicas) is described us-
ing the following equation: N = 3 ∗ f + 1 where N is
total number of servers required (*without any sharding
- see section later) and f is the presumed number of faulty
servers.

Due to the nature of BFT protocol, we have to store
relatively large metadata for any object in our datastore.
To solve those issues, we introduced sharding - the possi-
bility to split data across different machines. We present
sharding more in depth in the subsequent sections.

MochiDB supports dynamic configuration changes.
Clients with special privileges can add and remove
servers without shutting down the system. But during



transition phase, read and write operations are put on
hold.

2.1 Design Assumptions

When building MochiDB we took several assumptions
which helped us to simplify the system and optimize
relevant components. Since MochiDB is deployed over
WAN in different parts of the world, communication be-
tween nodes is physically limited by underlying network.
For example, ping time between Tokyo and Barcelona
is around the magnitude of 300 ms and between Paris
and Los-Angeles 150 ms [3]. Those times are multi-
ple order of magnitude faster than CPU execution time.
That means that optimizing for less number of message
round-trips is better than optimizing for processing time.
Hence, using public key cryptography as well as cryp-
tographically secured hash functions do not dramatically
bog down the overall cluster’s throughput.

3 Architecture

MochiDB is built to be an an asynchronous system
”where nodes are connected by a network that may fail
to deliver messages, delay them, duplicate them, cor-
rupt them, or deliver them out of order, and there are no
known bounds on message delays or on the time to exe-
cute operations.” [2] MochiDB was largely influenced by
HQ Replication [2]. Traditional agreement-based BFT
protocols such as PBFT [1] require too many message
exchanges during operations between servers, for every
request from the client. Diagram 2a and 2b visualizes the
message overhead. Such protocol performs well when
servers are located close to each other and client is far.
But in case of MochiDB, both servers and clients are lo-
cated far from each other.

Our system consists of clients C = {C1,C2, ...,CX}.
And servers S = {S1,S2, ...,SN}. Clients are servers are
identified by random ID which is unique for each client
and server. Clients act as coordinators for transactions.
Servers store data inside internal DB (datastore) and re-
ply to the clients by defined protocol. Sometimes servers
can initiate communication and talk to other servers, for
example to synchronize missing data. Diagram 1 visual-
izes our architecture.

In the best case scenario, we require only one round-
trip for read transaction and two for write transaction.
Read transactions do not modify state of the object.
Write transaction consisting of only write operations
does modify the state of the object. Write operations can
be overriding value or deleting object. MochiDB puts
constraint that we do not allow mix of read and write
operations within the same transaction. That was done

Figure 1: MochiDB System Diagram

Each of the clients uses MochiSDK to execute Mochi
protocol. Each of the servers contains of business logic (BL)
which is responsible for running protocol and DB (datastore)

which contains objects and metadata.

mostly for simplicity, but we believe that it is not hard to
design such support in future.

The server contains internal database (DB, datas-
tore) which stores dynamic part of configuration, ob-
jects and metadata. DB is structured as keys mapped
to StoreValueObjectContainers (SVOCs) and keys them-
selves represent object key. Internally SVOC stores value
and metadata associated with object. For example, if
MochiDB stores only two objects O1 = {”Washington” :
”Olympia”} and O2 = {”Cali f ornia” : ”Sacramento”}
which maps states to their capitals, then DB will con-
tain two keys - ”Washington” and ”California” . Those
keys will be mapped to some {SVOC1}and{SVOC2} re-
spectively with values ”Olympia” and ”Sacramento” and
metadata inside.

3.0.1 SVOC and Object Metadata

StoreValueObjectContainer contains the following data
inside it:
• value - string value associated with that key. Can be

null.
• key - string key for faster lookups
• valueAvailable - boolean property which indicates

whether value is available. Non initialized or
deleted keys will have valueAvailable set to false
• 〈long,Write1MultiGrants〉. - Maps E poch times-

tamp to collection of Write1Multigrants given on
that E poch(see section 4.2)
• currentC - current write certificate for that object -

i.e. signed collection of grants by different servers
with timestamp

2



(a) Agreement based BFT

(b) Quorum based BFT

Figure 2: (a) Agreement based BFT produces a lot of
messages between the servers as well as require extra
communication back to the client. Compared to (a)
which requires less message and also less communica-
tions

3.1 Trust and Permissions

To confirm that message was truly send by some party,
MochiDB uses signatures. As part of cluster config, a
master certificate will be used as trusted certificate au-
thority. Such master certificate is fixed for the life of
the cluster and must be carefully guarded. The Master
certificate is used to sign certificates for every client and
server in the MochiDB cluster. MochiDB does not al-
low blacklisting server certificates, but it allows configu-
ration change to remove faulty servers from the cluster.
MochiDB allows clients with following levels of permis-
sions : READ (read objects), WRITE (read and ) and
ADMIN (read, write objects and modify configuration).

4 Protocol Processing

In the core of MochiDB lies quorum based BFT proto-
col. Most of the actions (read, write, epoch progressing,
GC, etc.) are done in one or two phase approach. During
phase one, some member (client or server) initiates ac-
tion and send it to all 3 f +1 nodes (Note: shading mod-
ifies that equation and is described separately. For the
future descriptions assume that no sharding in present,
unless specifically stated so). Then, the initiator waits
for 2 f + 1 (quorum size) matching responses for write
and f +1 for reads. If server processing is required, then
similar phase 2 starts: responses received during phase
1 are send back to the server along with some action. If
some initial phase fails, initiator can suggest old servers
to bring themselves upto speed and retry operation or
message, which are explained in detail in the subsequent

sections.

4.1 Reads
Client initiates read transaction and send readToServer
message 〈ReadToServer, transaction, nonce〉 to
all servers, where nonce is secure random num-
ber of uniquely identify request and avoid re-
play. Each of the servers reply back with readAns
〈ReadAns, transactionResult, nonce〉, where transac-
tionResult contains list of OperationResult - one per
each read operation. OperationResult has the format of
result, currentC,existed, where result - string result of
that operation, existed boolean indicator whether such
value existed and currentC is the current write certificate
for that object. Client waits for f +1 matching responses
and if found, return transactionResult. If matches were
not found, that indicates that some servers are not yet
up to date. After a small wait time, the client retries
the READ. When client consistently sees grants with
older TS, epoch they can initiate resync to bring slow
mochiDB servers upto speed with other replicas. There
is a risk that frequently updated keys will starve reads as
there will be no quorum on the latest data.

4.2 Writes
Client initiate write transaction
and send write1ToServer message
〈Write1ToServer, transaction, txnHash, subE poch〉 to
all servers, where transaction contains just the keys as
values are unnecessary in the write1 phase, txnHash is
the hash value calculated for the entire transaction in-
cluding value (excluding value in case of delete) that will
be stored in server; subE poch is the random seed, a num-
ber within 0-1000 range alluded earlier in this paper. As
the value payload will be sent later, txnHash is invalu-
able for servers to catch malicious clients who could flip
the payload after aquiring a Write1Grant, by including
it in the Write1Grant. Upon receiving write1 message,
each server checks whether for each object there is
already grant for timestamp NextE poch + subE poch,
where NextE poch is the next timestamp epoch for that
object and subE poch is the random number received
from the client. MochiDB uses unsigned long format
for timestamps. Each timestmap consist of epoch
and numbering within epoch. We allocate 0-1000 for
numbering within each epoch and the rest for epoch. For
example, TS=4342 contains of epoch 4 (or equivalently,
4xxxx) and 342 as number within epoch. If timestamp is
not granted to any other client, server creates write grant
in form 〈ob jectId, timestamp,con f igstamp, txnHash〉.
If timestamp was granted, mochiDB checks whether
the Write1ToServer was a retry because the previously

3



issued Write1OkFromServer was lost by the network
and responds back with the stored grant information,
else the server denies issuing grant due to the client and
responds with 〈Write1Re f usedFromServer, currentC〉.
Note that grant is permission for a client to per-
form write operation on an object at specified future
timestamp. Grants are not revocable - once granted,
they can be executed at any point later on. Grants
for all objects within transaction are unified under
multiGrant and stored in the server so that the Server
does not issue Write1 multigrants to other clients and
also to service client retries within an epoch when
Write1OkFromServer is lost by the network. After sta-
bly storing multiGrant, server sends back Write1Ok mes-
sage 〈 Write1OkFromServer, multiGrant, currentC〉
where currentC is the object’s current certificate.

The client waits for 2 f + 1 matching responses and
construct writeC out of received Write1 multiGrants and
send 〈Write2ToServer, writeC, transaction〉 message
to all servers. Servers processing Write2 message will
verify whether the writeC contains 2 f + 1 grants with
consistent timestamps, calculate transaction Hash based
on the complete transaction and verify it with txnHash
present on Write1 multiGrant; if all validation crite-
ria are met, the Servers commit changes, save provided
writeC as currentC for each object and delete the sta-
bly stored, corresponding write1Grant issued earlier in
Write1 phase; the objects themselves might move to a
NewEpoch if necesssary at the end of Write2 phase,
more on that in the next section. If the Server finds a dis-
crepancy in txnHash or writeC, the server rejects Write2
operation, responds with a blank write2Ans signifying
abort and allows for the client to retry. In the former case,
each server sends Write2Ans message which describes
current state of objects involved in the transaction. The
clients can conclude the transaction is committed when
it receives 2 f +1 matching Write2Ans

4.2.1 Write contention

MochiDB server does not freeze read, write requests
to perform contention resolution unlike other BFT
schemes which perform conflict resolution via agree-
ment that involve message overhead[2]. Neither does
it assign dedicated primary server to resolve conflicts
like PBFT[1]. The random seed passed as subE poch
minimizes the probability of grant timestamp colli-
sions. If two or more competing transactions do
collide by having same subE poch value on overlap-
ping objects, servers will nudge clients to retry with a
Write1Re f usedFromServer message. Note that clients
require 2 f +1 Write1OkFromServer messages with con-
sistent Write1 Multigrants to proceed to the next stage,
when they fail to get the majority they have to perform

retries with a new random subE poch. On a key that is
frequently written, it is possible for clients to receive
Write1OkFromServer from majority of servers but with
multigrants with timestamps that don’t match, even in
such scenarios, the client has to wait for a short time and
retry again to get a consistent majority grant. Each ob-
ject in SVOC contains currentC with timestamp inside it.
This timestamp consists of E poch and numbering within
the epoch - subE poch. The Object might move from one
epoch to another when Write2 message is processed and
currentC gets overwritten. Note that subsequent Write1
multiGrants are assigned from next epoch relative to the
epoch of the currentC. Intuitively, epoch change acts
as a synchronization point between transactions - if two
transactions run at the same time, objects they modify
should be from the same epoch. If one transaction runs
after another is finished, object should belong to different
epochs. Within each transaction different objects might
be from different epochs, but subEpoch should be exactly
the same. Diagram 3 visualizes epoch timeline.

When server executes Write2 transactions which are
old, current and advanced relative to currentC’s epoch,
the following rules take affect: If epoch of transaction
T is less than current epoch of an object, the object will
not get modified. If epoch of T is the current epoch, but
subEpoch is less than currentC’s subEpoch, the object
will not get modified. In both cases, the server replies
success with Write2Ans along with most recent object
value. If epoch of T is the current epoch, but subEpoch is
large than currentC’s subEpoch or the epoch of T super-
sedes currentC’s epoch - update object value, overwrite
currentC with the writeCertificate and reply Write2Ans
with updated object value. These rules provide determin-
ism when multiple commits happen within one epoch.

4.2.2 Epoch exhaustion

It is possible for too many concurrent writes exhaust
1000 range of numbers dedicated to it. If that happens,
the clients can identify that and execute special protocol
procedure which will start NewEpoch, without modify-
ing current one.

4.3 Garbage Collection

MochiDB produces a lot of stored metadata (notably
given Write1 multigrants) for every object in the datas-
tore. To save disk space and prune expired Write1Grants,
MochiDB uses Garbage Collection (GC). When per-
forming GC, MochiDB treats objects independently.
Each server runs a background thread that removes
Write1 multigrants that were given 2 or more epochs be-
fore the currentC’s epoch. Recollect that we save Write1
Grant in server for every Object to avoid giving new

4



Figure 3: Object Epoch Timeline
Object 1 has current epoch 6 (6xxxx) because during that epoch the last Write2 happened - points c and e. During epoch 6 Write2

(point d) was granted but never finished. Epoch 5 (5xxxx) is old epoch with one finished Write2 (point a) and one non finished
(point b). New epoch is 7 (7xxxx). Timestamps for write1 requests will be granted from that epoch. Currently two grants

happened (points f and g), but no Write2 was received yet.

Write1 Grant to a different transaction on the very same
timestamp and also to respond to Write1ToServer retries.
As we have moved to advanced epochs, the old Write1
multigrants are no longer needed as they had completed
their purpose of existence.

4.4 Resync

Clients can detect slow mochiDB servers when they con-
sistently issue Write1 multigrants that are from older
epochs from the rest of the cluster. When alterted by a
client with an U ptoSpeed operation, the slow mochiDB
server acquires write locks on those objects so that all
read, write operations pertaining to them stall and pro-
ceeds to execute a special sync operation with an upto
date mochiDB server identified by the client. This sync
operation involves overwriting the identified set of ob-
jects’ value, currentC and given Write1 MultiGrants to
match those from the upto date server to complete the
resync.

4.5 Sharding

MochiDB supports sharding natively. Each key is
mapped to some hash by known and fixed hash function.
All of available space is divided into equally sized parti-
tions using Q tokens. Since hash space is known and the
number of partitions fixed, its trivial and deterministic
to calculate those tokens. Each server is assigned multi-
ple tokens by administrator depending on server perfor-
mance, location to readers/writers, etc. That mapping is
stored in the configuration of each server and also can be
reliably retrieved by the client. When data is stored, it is
stored on N nodes along the ring starting from the next
token on the ring. The algorithm to determine nodes is
the following:

1. Apply hash to the key and get Hk
2. Select the next token on the ring which follows or

equals to Hk

3. Circle the ring clockwise and select N nodes. Those
will be the servers participated in transaction.

Due to BFT requirements of the protocol, extra restric-
tions are added to the process above. N selected nodes =
3 f + 1, where f is number of faulty replicas. That has
the following implications: If we want to double capac-
ity (i.e. reduce by half number of partitions/shards on
each server), in order to maintain the same f, we must
double number of servers. Or if we reduced by half num-
ber of partitions on each server with the same amount of
servers, we are also effectively reducing f.

Servers which are mapped to N selected tokens must
be unique. That prevents the same faulty server partic-
ipating multiple times in the transactions. That is fix-
able at the assignment time - when tokens are assigned
to servers no 2 out of N sequential tokens are given to
the same server.

4.6 Configuration changes

MochiDB allows configuration changes without reboot.
Configuration is stored similar to other keys and all con-
figuration keys starts with ”CONFIG ”. We introduced
configurationstamp (CS) which is a number, that incre-
ments every time configuration changes. During all op-
erations (such as write1, Write2, read, gc, etc.) CS is
being passed alongside the message. The server denies
message processing if its current CS differs from the re-
ceived CS.

The following algorithm is executed on a client with
admin privilege:

1. Administrator allows all outstanding UpToSpeed
actions to completion

2. Administrator sends config1 message to ALL
servers. When servers receive config1, after vali-
dation they perform the following:

(a) Checks whether there are concurrent config1
messages being processed at the moment. If
there is one, the server will respond back with

5



error.
(b) Blocks server from accepting any new read,

write messages.
(c) Send back config1ready

3. The client waits for majority of config1ready mes-
sages, creates configChangeCertificate and proceed
to phase 2.

4. During phase2, client send configChangeCertificate
to each of the servers through config2 message.
Upon receiving of message, each server will apply
configuration, increment CS and reply with ack.

5. Configuration change assumed to be complete when
client receives majority of acks.

5 Implementation

We built MochiDB using Java8, Netty as asynchronous
network communication library, Protobufs as serializa-
tion library, Spring Boot for REST API and manage-
ment UI. The functional, test and deployment code is
over 48,000 lines and is publicly available in our open
repository[5]. We used in memory DB, but switching to
some other DB (like MySQL) in future should be simple
and uncomplicated. We have also published our in mem-
ory DB, mochiDB docker image [4] for the public to test
and deploy them in public cloud and enterprise data cen-
ters. Our implementation lacks PKI support - that work
is left for the future, but our tests showed that adding
TLS and signing messages should not have huge impact
on performance.

5.1 Evaluation

During development we spun up virtual mochiDB server
and client clusters within the JVM and built a test frame-
work that tested the underlying sharding scheme, read,
write, delete operations, concurrent transactions and a
special stress test scenario. To evaluate the performance
on a WAN setup, we devised 5 mochiDB clients con-
currently executing transactions with a 5 node mochiDB
Server cluster (sharded) running on AWS public cloud,
us-west-1 zone. The average ping time between client
and server clusters is about 13 ms. Each local client
gets assigned 40 distinct keys and performs the follow-
ing sequence of transactions : write key-value, then read
each key and verify the content, followed by deletion of
all keys. Table 2 on page 6 describes read, write times
measured. During this stress test, distinct keys were as-
signed to clients. We noticed higher latencies for write
and reads, when test clients overlap keys.

Table 2: MochiDB WAN performance

READ Time WRITE Time
50th percentile 26.6 ms 50th percentile 56 ms
95th percentile 31.1 ms 95th percentile 98 ms
99.9th percentile 33.9 ms 99.9th percentile 145 ms

6 Optimization

We have identified that using leases will greatly im-
prove write performance across the cluster and the use of
hashes to reduce size of messages will improve the over-
all throughput. We can minimize metadata overhead, by
only storing Grants pertaining to an object from major-
ity of MochiDB servers instead of the all encompasing
writeC, that contains majority grants for all objects in-
volved in the transaction.

7 Conclusion

In this paper we presented MochiDB - distributed, con-
sistent, BFT key value store which is intended to work
over high latency communication network. Our testing
showed that MochiDB is a viable product that can oper-
ate well under high read requests and moderate write re-
quests. Our work is the first attempt to build a production
ready, WAN distributed BFT datastore for configuration
management. In building MochiDB, we applied several
enhancements to quorum based protocol including intro-
duction of random write seeds and epochs to minimize
contention resolution costs on the server.

References
[1] CASTRO, M., AND LISKOV, B. Practical byzantine fault toler-

ance. Proceedings of the Third Symposium on Operating Systems
Design and Implementation (1999).

[2] JAMES COWLING, DANIEL MYERS, B. L. E. A. Hq replica-
tion: A hybrid quorum protocol for byzantine fault tolerance.
USENIX Symposium on Operating System Design and Implemen-
tation (2006).

[3] Ping Latencies across the globe. https://wondernetwork.

com/pings. Accessed: 2017-11-26.

[4] TSATURYAN, T., AND DHAKSHINAMURTHY, S. DockerHub.
https://hub.docker.com/r/mochidb/mochi-db/.

[5] TSATURYAN, T., AND DHAKSHINAMURTHY, S. Repository.
https://github.com/saravan2/mochi-db/.

6


