
Distributed ETL
A lightweight, pluggable, and scalable ingestion service for real-time data

Joe Wang
joewang@cs.stanford.edu

ABSTRACT
This paper provides the motivation, implementa-
tion details, and evaluation of a lightweight dis-
tributed extract-transform-load (ETL) service de-
signed for large scale ingestion of real-time data.

1 INTRODUCTION
Today’s world of internet connected devices has
shown to generate larger and larger volumes of data.
Buried in these massive streams of data are in-
sights many companies would find valuable. For
example, the telemetry components in Windows
10 emit data on the health of the system, so that
Microsoft can detect and resolve widespread issues
users might face. As services grow in size, however,
a challenge many companies face is the need to
scale their data pipelines to accommodate the ever
increasing amounts of data to process.
One part of the pipeline that requires scale is the

ingestion component, which is responsible for re-
ceiving and processing raw data from varying sources.
Traditionally, extract-transform-load (ETL) is the
process in many data warehouses, where a front-
door receives data in some semi-structured state,
it applies some transformations to produce a stan-
dardized structured result, and stores the result in
a database. Due to the enterprise nature of existing
ETL software, most such systems are not designed
to scale to the internet.
We propose a service that performs ETL, but is

designed to easily scale up in accordance with data
volumes.

CS 244B, Distributed Systems

2017.

2 COMPONENTS
To understand the ingestion system as a whole, we
first define the components that make up the sys-
tem.

2.1 Source
Sources are the origination point for data to con-
sume. The most common source might be a sub-
scriber to a publish/subscribe system, such as Apache
Kafka or Microsoft Azure EventHub. These sys-
tems increase in scale by partitioning their data
streams, so we model our service to do the same.
In particular, we define an EventSource to be the
data stream for a single partition from a given
EventSourceFactory, which is the collection of par-
titions that make up a logical data stream.
We require these sources to produce data in an

ordered and reliable manner, that is, by specifying
some “offset” to a partition, the source always re-
turns the same stream of data.

2.2 Processor
We define an EventProcessor as any process that
takes some input data set of some input type, ap-
plies filter, join, and projection operations, and pro-
duces some output data set of some output type.
We require the processors to be idempotent, so

that the same input data will always produce the
same output data.

2.3 Sink
EventSinks are the destination to which transformed
data is written. This could be a database, some
shared filesystem, or a cloud storage provider like
Amazon S3 or Azure Storage. A common format

1



CS 244B, Distributed Systems Joe Wang

used might be Apache Avro, which is a schema-
tized, row-oriented, compact data serialization for-
mat typically used in Hadoop oriented big data sys-
tems.

3 GOALS
We’d like to achieve the following capabilities with
the Distributed ETL system:
Scalability. The system should be able to in-

crease capacity simply by adding additional nodes
for processing.
Reliability. The system should continue process-

ing data even while a minority of the nodes fail. The
system should not unintentionally drop data during
processing, that is, we need at least once semantics.
Ideally, we would like exactly once semantics, where
duplicate data should not be written.
Extensibility. It should be easy for add new

implementations for sources, processors, sinks, and
other components (described later).
Low Maintenance Overhead. The system should

be comprised of as few components as required to
function.

4 IMPLEMENTATION
The next several sub-sections describe the imple-
mentation used in the Distributed ETL project.

4.1 Data Flow
A typical data consists of a single EventSource,
wired through a single EventProcessor, to a single
EventSink. The EventSource makes requests for
data to be retrieved at the last processed offset; the
EventProcessor transforms the retrieved data; the
EventSink writes the transformed data. Finally, a
new offset associated with the processed data is
persisted for the partition.

4.2 Workload Management
Running an ingestion service at scale across many
nodes requires coordination and persistence of two
pieces of data: the assignment of which node should
process which partition, and the last offset that has
been processed for each partition. Our implemen-
tation uses a modified Raft [1] consensus protocol

for electing a leader to distribute the workload and
keeping offset checkpoints.
We found that the original Raft specification, while

is general for any given state machine, was overly
complex for our requirements. Instead, we propose
the following changes.

4.2.1 State Log. Because the state we maintain
is a snapshot of the cluster at a given point in time,
we found there was no need to keep a complete log:
we always want each node to be at the latest state.
Hence, we simply keep the last versions of entries in
the state, associated with a monotonically increas-
ing global version number for each mutation. For
nodes that fall behind in state, we simply sync the
entire state (which is small) via AppendEntries.
Because the original AppendEntries RPC spec-

ification requires rejecting requests whose versions
do not match, we need to make a modification to
allow the state sync. To the RPC, we add an ad-
ditional field called force. When set to true, log
version and term checks are ignored, as we assume
the data received will always be the latest.
Making this optimization also removes the need

for processes like log compaction.

4.2.2 SynchronizedFollower. Raft uses three states,
Leader, Candidate, and Follower to provide state
machine replication. Because we also require each
node to acquire the latest state before it begins pro-
cessing, we add a fourth state called Synchronized-
Follower. The state is equivalent to Follower for
the Raft protocol, but only transitions on the first
accepted AppendEntries RPC that was not forced.
Upon transition to SynchronizedFollower, the node
is notified to begin processing.

4.2.3 Losing Quorum. If at any point the clus-
ter loses quorum, Raft is unable to update the
partition information. In this scenario, each node
will continually retry the update until the cluster
is back in quorum, impeding progress. To reduce
the amount of unnecessary RPCs, we make an op-
timization to stop node processing until the cluster
has quorum again.
To do so, we maintain a “keep-alive” timer in

the program, similar to the election timer, and we
also add one more field to AppendEntries called
hasQuorum. When a follower receives a heartbeat

2



Distributed ETL CS 244B, Distributed Systems

for which hasQuorum=true, it resets the keep-alive
timer. When the keep-alive timer elapses, we as-
sume quorum was lost, and we stop processing.

4.3 RPC
gRPC libraries were used for communication among
nodes.

4.4 Sources and Sinks
For evaluating correctness of the system, we supply
an event source and event sink.

4.4.1 SampleEventSource. The SampleEventSource
generates data with the time, a monotonically in-
creasing offset value, the name of the node process-
ing the source, and whether the node was a leader.
The values contained in this data stream enables
us to verify that all events were in fact correctly
processed, and no data was dropped.

4.4.2 PositionedFileEventSink. This writes each
event as a single line out to a text file at a con-
figurable path. The sink also maintains a set of
checkpoints mapping offsets to file positions, which
enables exactly once semantics for data processing.

4.5 Scheduler
We implement a very simple scheduler based on
consistent hashing; the set of active nodes are placed
on a circle, and partitions are assigned based on
their hashed locations on the circle.

4.6 Object Pools
Processing large amounts of data in a managed lan-
guage has the potential for undesirable garbage col-
lection overhead. To mitigate this performance is-
sue, we use a simple object pooling implementation
to recycle objects being used.

4.7 Plugin Architecture
To support extensibility, we provide a configuration
driven mechanism by which all data flows are setup.
All components must implement their respective in-
terfaces and have the attribute IngressComponent
with a unique name. The configuration thus pro-
vides the association between a source, a processor,
and a sink.

At runtime, reflection is used to catalog and reg-
ister with Autofac (an IoC container library) each
valid component in the currently assembly, as well
as assemblies specified in configurations. For each
configuration, Autofac is then used to resolve the
appropriate implementations for instantiation.

5 EVALUATION
In evaluating Distributed ETL, the primary char-
acteristic we wish to ensure is correctness. We need
to check that work is properly assigned, that when
nodes are removed and rejoined, work is properly
reassigned, and that the data being produced is
valid.
While performance may also be interesting, that

is much more dependent on factors not directly re-
lated to the partition management system (e.g. net-
work I/O speeds). All in all, the total throughput
capability of the system matters much more so than
latency.

5.1 Setup
We configure a 5 node cluster with the following
parameters:

• Node names:
– BN4SCH102032018
– BN4SCH102031924
– BN4SCH102032017
– BN4SCH102031919
– BN4SCH102031619

• Partitions: 10
• RPC timeout: 1000 ms
• Heartbeat interval: 300 ms
• Election timeout: 3000 ms
• Keep-alive timeout: 3000 ms

The SampleEventSource emits 10 events every
second, and the PositionedFileEventSink writes
to a network share available to all nodes.
Once the cluster becomes operational in a steady

state, we invoke the steps in Table 1. We note that
at 31:32, the cluster no longer has quorum, so all
progress should pause until 32:16.

5.2 Results
We use the data written out for each partition to
visualize the behavior of the cluster. By writing

3



CS 244B, Distributed Systems Joe Wang

Table 1

Time Action

29:15 BN4SCH102032018 (leader) killed
30:15 BN4SCH102031924 (leader) killed
30:46 BN4SCH102032018 restored
31:32 BN4SCH102031919 killed

BN4SCH102032017 killed
32:16 BN4SCH102031924 restored

out both the partition as well as the node, we can
produce graphs of time plotted against offset (rep-
resenting progress) by the two pivots respectively.
For correctness, we expect:

(1) A linear association between the time and off-
set for each partition with no missing interme-
diary values.

(2) At any given point when progress can be made,
progress is eventually made.

5.2.1 Partition View. Figure 1 displays the progress
made on partition 5 by the cluster. The discon-
nected line segments corresponding to the 3 series
associated with the nodes processing this partition
clearly show points in time when cluster configura-
tions change. The work is assigned by default to
BN4SCH102031924. When BN4SCH102031924 is
killed, we see that the work shifts to BN4SCH102031919.
When BN4SCH102032018 is restored, we see that
the work is reassigned to BN4SCH102032018. When
the cluster loses quorum, work stops. When quo-
rum is restored by adding BN4SCH102031924, work
is given back to BN4SCH102031924.
Where the work for any given partition is as-

signed is simply a function of the scheduler, with
which we do not concern ourselves for the purposes
of this paper. What’s important to see is that the
work being performed is correct.

5.2.2 Node View. Figure 2 displays the work per-
formed by node BN4SCH102031919 across 6 differ-
ent partitions. Like Figure 1, we observe the chang-
ing set of partitions being processed, with work
stopping when the cluster loses quorum. Curiously,
we see that this node does not resume work when
the cluster returns to quorum, but this is most

likely due to a delay in the scheduler while reassign-
ing partitions. Had the run continued, this node
would have been assigned new work at some point
in the future.

6 CONCLUSION
In this paper, we’ve motivated the need for Dis-
tributed ETL, described a working implementation,
and characterized its behavior. Before using it in
production, however, we should evaluate Distributed
ETL along side existing stream analytics software
that could be repurposed to perform the same func-
tion, as well as implement additional functionality
necessary for real life workloads.

6.1 Related Work
Many general purpose stream analytics platforms
like Apache Flink, Apache Spark, and Apache Storm
could be repurposed to perform the work of ETL,
but they require a much more complex setup of
differing roles (master, worker), and do not pro-
vide fault-tolerance on their own. Instead, they rely
on the service owner maintaining a ZooKeeper in-
stance for high availability. Distributed ETL pro-
vides all the coordination required out of the box.
As this project was underway, LinkedIn announced

their own implementation of a very similar service
called Brooklin [2], which performs data transfor-
mations using SQL like semantics. However, their
coordination also relies on a ZooKeeper instance.

6.2 Future Work
6.2.1 Additional Sources and Sinks. For the sys-

tem to be useful, additional sources (Kafka, Even-
tHub) and sinks (Avro, S3, Azure Storage) should
be supposed. These extensions should be a straight
forward implementation of the given interfaces, and
time taken will mostly depend on the SDKs being
used.

6.2.2 Scheduler. Throughout the paper, we’ve as-
sumed that all sources being processed require sim-
ilar amounts of resources from the node, which may
not always be the case. A scheduler that reallocates
work based on statistics collected from all nodes
(CPU/memory/network utilization, etc) has the po-
tential to improve overall performance.

4



Distributed ETL CS 244B, Distributed Systems

2018 (leader) killed

1924 (leader) killed

2018 restored

1919, 2017 killed

1924 restored

16:29 16:30 16:31 16:32 16:33

0

200

400

600

800

1000

1200

BN4SCH102031924

BN4SCH102031919

BN4SCH102032018

Figure 1: Partition 5 Progress

2018 (leader) killed

1924 (leader) killed

2018 restored

1919, 2017 killed

1924 restored

16:29 16:30 16:31 16:32 16:33
0

200

400

600

800

1000

1200

Partition 1

Partition 3

Partition 5

Partition 6

Partition 9

Partition 10

Figure 2: Node BN4SCH102031919 Work

REFERENCES
[1] Diego Ongaro and John Ousterhout. 2014. In Search

of an Understandable Consensus Algorithm. In Proceed-
ings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference (USENIX ATC’14). USENIX
Association, Berkeley, CA, USA, 305–320. http://dl.acm.
org/citation.cfm?id=2643634.2643666

[2] Samarth Shetty. 2017. Streaming Data Pipelines with
Brooklin. (2017). https://engineering.linkedin.com/blog/
2017/10/streaming-data-pipelines-with-brooklin

5

http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2643634.2643666
https://engineering.linkedin.com/blog/2017/10/streaming-data-pipelines-with-brooklin
https://engineering.linkedin.com/blog/2017/10/streaming-data-pipelines-with-brooklin

	Abstract
	1 Introduction
	2 Components
	2.1 Source
	2.2 Processor
	2.3 Sink

	3 Goals
	4 Implementation
	4.1 Data Flow
	4.2 Workload Management
	4.3 RPC
	4.4 Sources and Sinks
	4.5 Scheduler
	4.6 Object Pools
	4.7 Plugin Architecture

	5 Evaluation
	5.1 Setup
	5.2 Results

	6 Conclusion
	6.1 Related Work
	6.2 Future Work

	References

