ZombieKV: Scalable, Replicated and Cached Key-value
Store using Consistent Hashing
Sen Yu

Abstract: This paper introduces ZombieKV, a scalable key
value store with a replication factor of 3. ZombieKV stores
data persistently on disk with the servers oriented in a hash
ring topology, while maintaining an in memory cache that
supports eviction strategies such as FIFO, LRU and LFU. It
supports scaling of servers without service downtime,
automatic failure recovery of servers, subscriptions and
malicious server detection and recovery.

1. Introduction

Dynamo [1] is one of the few key value stores we studied in
class. ZombieKV is deeply inspired by the Dynamo ring the
authors of the Dynamo paper proposed at the beginning.

The key highlights of ZombieKV are:

e Scalable: The key-value store service need not to shut
down for configuration changes such as add or remove
nodes from the service

e Replicated: With a replication factor of 3, 3 specific
servers need to fail concurrently for data to be lost

e Fast writes and eventual consistency: Writes are
successful as soons as the primary server for that key
(coordinator) writes it to disk. The coordinator then
lazily tells its replicas about the write

e Cached: Not only is the data stored durable on disk,
there is also a small cache in memory for fast reads

e Simple key-value store semantics: There are only 2
operations available to the client during normal
operation, PUT and GET

e Failure detection and auto recovery: The servers
exchange heartbeats to detect failures and the service
automatically brings up backups to maintain the
number of servers in the service

e Malicious server detection and replacement:
Verification processes are put in place to check the
validity of PUTs and GETs. If a server is behaving
maliciously then it will be automatically be replaced

e Subscriptions: Clients can subscribe to any key and be
notified when the value associated with that key
changes

2. System Architecture
In this section, we will go over some key design decisions |
made when developing ZombieKV.

2.1 Topology

The topology of ZombieKV is depicted in Figure 2 of the
Dynamo [1] paper. Each server node (server) on the hash ring
runs on its own machine. Every node maintains some metadata
about the service. These metadata include the node’s own IP
address and port, and other node’s IP address and port. The

hash range each server is responsible for is computed by taking
the MD5 hash or the node’s own IP address:port number
which results in a number to place the server at a certain
position on the hash ring. The 2 successors of any server also
replicates all the data in that server.

2.2 Communication Protocol

There are three roles (machines) in ZombieKV: client, server
and admin. Communication is only possible between
client/server, server/server and server/admin. There is no direct
connection between the client and the admin, neither is there
any scenario that warrants that kind of connection.

There are three cases which there are client/server
communications. First, the client can connect to any single
server it knows about to begin normal operation such as PUT
and GET. If the key the client is operating on does not fall into
the hash range the server being contacted is handling (i.e. not
the coordinator), the server will return a message with status
code SERVER NOT RESPONSIBLE along with some
metadata that describes the current topology, i.e. which servers
are responsible for which hash ranges. Then, the client can
contact the appropriate server for operations. Another case of
client/server communication is for malicious server detection.
There will be detailed implementation of this feature in section
3.6. On a high level, during a PUT request, the 2 replication
servers will connect to the client and ask if the clint indeed
initiated such PUT request. During a GET request, the client
will connect to the 2 replication servers and verify the key
value pair it received from the coordinator is correct. The last
case for client/server communication is for subscriptions. This
is also discussed in depth in section 3.7. In short, the client tells
a server the key it want to subscribe to and the port number it
would like to receive notifications on. Whenever there is a
change to the value of the key the client is subscribed to, the
coordinator of that key will push a notification to the client at
the designated port.

The communication between server/server is mainly for
replication. When the coordinator receives a PUT request from
a client. It immediately returns to the client with status code
PUT _SUCCESS and in the background initiate replication
requests to the 2 replicas that are successors to the coordinator.
This is called eventually consistency as we studied in class. In
addition, each server pings (heartbeats) its successor every 5s
to make sure it is alive. If not, it will notify the admin about
this situation and the admin will take appropriate actions.
Lastly, the admin may instruct servers to transfer data to other
servers. This is usually due to configuration changes such as
adding and removing servers.

The admin (a machine) communicate with the servers to exert
control over the service. During service startup, the admin ssh
into the server machines and spin up a JVM to start the server
application. The admin also gives the START and STOP

1

message to servers to allow and disallow them to communicate
with clients. When adding a server or removing a server from
the service, the admin has logic to compute which data needs
to be moved and instructs the servers that are involved in data
movement to 1) Lock for any writes 2) Instructs the sending
server to send the data over to the receiving server 3) Update
the hash range for servers that are affected (only local to a few
servers) 4) instruct the new server to START if adding a new
server or to SHUT DOWN if removing a server. Another form
of control the admin exerts to the servers is through failure
detection and auto recovery. As noted in the server/server
communication discussion, when the admin is notified from a
server that another server is dead, the admin will first PIN the
presumed dead server to check if it indeed failed. Then the
admin will launch a “recovery procedure” by doing 1) Identify
a idle server listed in admin.conf 2) Start it up by ssh into the
machine and launch the server application 3) Identify the data
the new server should manage, locate them in the replicas that
are online, and instruct the replicas to send the data over to the
new server 4) Update affected servers with new metadata.
Note, the admin referred in this paragraph is the machine that
is running the admin code. The administrator (a person) has
access to an admin client that only has high level commands
such as initService, start, stop, shutDown, addNode and
removeNode. All the detailed logic and instruction to servers
are handled by the admin machine (code).

3. Implementation

3.1 Message Encoding

Messages are encoded in JSON and there are four fields. For
example {“statusType”: ADMIN_START, “argl”: null, “arg2”:
null, “arg3”: null} is a valid message in the the service. The
statusType dictates what kind of message this is. For example,
when the statusType starts with ADMIN, it means that these
are coming from the AdminClient instead of a normal client. If
the statusType is ADMIN UPDATE, then it is expected that
arg3 would be the new metadata the server should be saving.

3.2 Socket Programming and Threading

On the client side, there is only one active connection with a
server at any given time. A Java TreeMap is used to speed up
lookup of the server responsible for a given hashed key. Each
client will connect through their own instantiation of Store (a
Java Class in code), which acts as a client library. If a new
storage server connection needs to be established, for example
upon receiving SERVER NOT RESPONSIBLE, the Store
will replace current socket with a new socket. This way, [was
able to keep the memory usage at a minimum at the expense of
increased latency in initializing sockets and input/output
streams. | also decided to use TreeMap to keep track of the
server hashes, so that given a new hashed key we can perform
a fast O(logn) lookup of the matching storage server.

On the server side, there 1s a main thread called
WelcomeThread that listens to incoming connections. Both the

client and the admin (machine) can connect to the server. I
created a new thread for each client or admin connection to the
server. All of the threads share a couple of static volatile
variables from the WelcomeThread which are used for the
admin activities. To switch off the server’s ability to accept
client requests, I used a shared lock among the main
WelcomeThread and all the other client connection threads to
prevent race conditions. It works as follows: to turn off the
client requests, we need to first make sure that there are no
ongoing client request processing. To ensure that, we first close
down the isOpenToClientRequests volatile variable, then we
try to acquire the shared lock before we actually declare that
we have successfully closed the client requests.

The admin communicates with the server in a similar way as a
normal client but with different statusType field in
KVMessage. There is a full set of “API”’s in AdminStore class
that is used by the admin for communicating with the server as
a library just like the Store class for the client. Admin (code)
runs locally on the administrator’s (human) machine and gives
instruction to individual servers. The admin (machine)
maintains the state of the distributed system. The admin is able
to take in 6 different high-level request from the administrator,
For example, addNode, and make calculations as to where the
new node should be placed on the hash ring. After that it
computes what each node has to do, for example, a node might
need to transfer data to another. Finally, the admin send all the
instructions in the form of ADMIN messages to the servers.

3.2 ZombieKV: Failure Detection and Auto Recovery

In ZombieKV, each server establishes a connection with its
successor in the ring topology and send “heartbeat” messages
every five seconds. If its successor does not reply to the
“heartbeat” request message in five seconds, then the server
that initiates the “heartbeat” request will conclude that its
successor is dead and it will then establish a connection with
the admin to inform it with the dead server’s serverld
(IPAddress + PortNumber). After admin receives the message,
it will pin the dead server to confirm that it is dead. After it
confirms the server is indeed dead, it will perform a
removeNode operation on the dead server. After the
removeNode operation is complete, it will perform an addNode
operation from a pool of idle servers to add back to cover the
loss of the dead server. Note that the removeNode and
addNode operation are not the same as when an administrator
types them in by hand, the detail of that design and
implementation is discussed later in 3.4 System Reconciliation.

The “heartbeat” mechanism among the servers described above
was invoked when admin issues the initService command. (i.e.
Each server will establish a connection with its successor).
After that, whenever there is a new metadata update which
contains the new arrangement of server nodes, the “heartbeat”
mechanism will get invoked but only the servers with a new
successor will tear down its old connection and establish a new

connection with its new successor. This design will ensure that
the number of connections between the servers is the same as
the number of nodes. It can handle multiple node failure
despite that there is only one connection between each pair of
servers. For example, if there are 5 nodes (A, B, C, D, E) in our
distributed system, and A sends heartbeat to B, B to C, C to D,
D to E and E to A. If node A and node B both go down at the
same time, although that at the moment A can’t inform admin
that B is down because itself is down, A will get detected by E
to be dead and E will inform admin about it. Admin will then
handle the death of A by performing removeNode operation
first and update the metaData. Once the metaData is received
by each server (metadata now only contains B, C, D, E because
A has been removed), new heartbeat connection will get
established between E and B due to that E’s successor used to
be A and now should be B based on the new metadata. So E
will try to establish a connection with B, but since B is dead,
the connection will not get established and E will inform admin
that B is dead, which means that both the failure of A and B
can be detected by our failure detection design. Note that there
are cases where there are multiple messages with the same
dead server to admin due to that the reassignment of
connections between servers is performed after each
removeNode and each addNode operation. To resolve the
problem of removeNode and addNode the same server multiple
times in this case, admin will perform a checkup/pin on the
dead server to determine whether it will perform the operations
to recover failure. If admin gets a response from the dead
server, it means that admin has already recovered it due to a
previous message.

3.3 Replication Mechanisms

In order to replicate, each server will determine its two replicas
from the metadata. Each time a write operation is received by
the server, it will write to its own persistent disk first and then
establish connections to its two replicas and send a special
server to server put request (which is a different request than
the client to server put request that will bypass the write hash
range check). This operation is non blocking which means that
the data on the replicas may be stale but eventual consistency
is guaranteed. Write requests can only be served by the
coordinator for a given data item while read requests can also
be served by the two replicas.

3.4 System Reconciliation

System Reconciliation will take place with every addNode and
removeNode call by the administrator. The reconciliation is
handled in the Metadata Java Class’ addNewServer and
removeServer methods. These methods will make adjustments
to the inner treemap structure of metadata and return back a
map in which the keys are server names and values are
hashRanges of which data is needed to be added or removed
from the server’s key range. For adding new nodes, the
resulting map will contain the next three successors of the new
node and the hash ranges of the data need to be moved from

the successors onto the new node. If failure is encountered
when moving data, admin will pick other replicas that has the
data and copy the data from that replica onto the newly added
node. For removing nodes, the resulting map will contain the
next three successors of the removed node and the hash ranges
of the new data needed by these successors. Admin will then
find servers that have copies of the data corresponding to the
hash range and attempt to move data from these servers to the
needed server until success.

Moving data is achieved by transferring key value pairs within
the range given by the admin from the source server’s
persistent storage to the target server’s persistent storage one
by one over the network. First, the admin sends a
ADMIN_MOVEDATA message to the server that contains the
data to be transferred, while specifying the destination server
and the range of interest. The source server, after receiving the
message, will establish a connection with the target server and
use the ADMIN_FILETRANSFER message status type to let
the target server know that it is not a put request from client but
a file transfer request so that it will bypass the target server’s
own hash range check and directly go to the persistent file.
Once the target server finishes, it sends a message to the source
server (ADMIN FILETRANSFER COMPLETE) and the
source server will send the admin a response message to let it
know that the file transfer process has completed.

3.5 Client Handling of Dead Servers

The client (machine) will keep a version of the metadata
similar to the one admin has in memory. When a client
encounters SERVER NOT RESPONSIBLE error and with it
new metadata from the server, it will update its local version of
metadata of the current service topology. If during put and get
calls, the client encounters a dead server, a Socket Exception
will be thrown and caught by the client which triggers it to
remove the dead server from its metadata, and a new call will
be initiated. Since each put/get request will perform a lookup
for the server to send requests to based on the metadata, the
dead server can no longer be found. The dead server's
successor will most likely be found and the request will be
directed to the new server. The same handling will be issued
until there are zero servers left in the metadata, in which case
the client application will returned an error to the user
(human).

3.6 Detection and Recovery of Compromised Servers

The detection of compromised servers feature involves two
types of detection, the detection of “compromised get” and the
detection of “compromised put”. A “compromised get” is
when a compromised server attempts to return a wrong value
to a client’s get request. A “compromised put” is when a
compromised server attempts to update key-value pairs
(replication process) on other servers that were not initiated by
the client or initiated by the client but with the wrong value.
The following is the detection and recovery of compromised

3

get and detection and recovery of compromised put protocol
summary.

Detection and Recovery of Compromised Get Protocol
Procedures:

1. Client initiates a GET request to Server A,

2. Server A will reply to the Client with a key-value pair

3. Once the Client has received the key-value pair from
Server A, it will silently (non-blocking background
operations) send the Key,Value pair to the other two
replicas(call them Server B and C) that also know
about this key-value pair

4. Server B and Server C, once received the key-value
pair from the client, will validate the key-value pair
using their own persistent storage. If the value is
wrong, or the pair does not exist, Server B and Server
C will notify the client and admin.

5. Once admin receives both messages from Server B and
Server C that Server A is compromised, which means
the quorum(majority) is reached, it will take action
against the Compromised Server A by taking it down
and deleting its data and then bring it back up with the
data from its replicas.

6. Once the client receives both messages from Server B
and Server C that Server A is compromised and with
the actual read value (quorum is needed), it will notify
the user (human) in the UI that the previous value that
the user got was incorrect and what the actual read
value should be.

Detection and Recovery of Compromised Put Protocol
Procedures:

1. Client initiates a PUT request to Server A. Each of our
client application has a server socket that is used for
the cases where servers need to contact the client for
validations of PUT request.

2. Server A will reply to the
PUT_SUCCESS message

3. Once client receives the reply from Server A that the
PUT request is successful, it will store the put request
in its action log

4. Server A will proceed to send Server B and Server C
(its replicas) the client PUT request. In our protocol,
each replication not only needs the key-value pair but
also the origin of the request (which client is the
request from).

5. Server B and Server C will attempt to connect to the
client that is provided in the replication message and
send the key-value pair along with Server A’s
name(origin of replication process) to the client for
confirmation

6. Once the client receives the messages from Server B
and Server C, it will compare the key-value pair with
its action log mentioned in step 3. If such key-value
pair by Server A put operation is not found in the
action log, or the value is wrong, it will message back

Client with a

Server B and Server C that the client has never
requested such put operations. And If such key value
pair put operation indeed exist and is by Server A, then
it will just silently ignore the message.

7. If Server B and Server C receives messages from the
client that Server A’s put operation was wrong, they
will tell admin that Server A is compromised.

8. Admin will take action against Server A by shutting it
down and replacing its content with its replicas’ data
and bringing it back up.

If the reader wants to try this functionality out. I have
specifically encoded any server running on port 60008 to be a
compromised GET server and port 60009 to be a compromised
PUT server for demonstration purposes.

3.7 Subscription and Notifications

ZombieKV allows the user to subscribe and unsubscribe to
data mutations. To use it, the user may enter the commands
“subscribe” and “unsubscribe” followed with the key of
interest. First, the client opens a client side ServerSocket
(listening socket) to listen for incoming notification in the
future. During a subscription, the client (machine) will find out
which server is the coordinator for the key of interest by
exchanging messages with the servers it knows and update its
metadata if necessary. Then, the client will send the
subscription request which contains the key and the IP address
& port of its ServerSocket to the coordinator server. The
coordinator server will then save the request in memory. In the
future, when this server receives a new put request or put
update to this key, it will lookup the ServerSocket that was
subscribed to this key (the client) and send a notification out to
the client.

However, the subscription is lost if the coordinator fails. I
solved this challenge by making the observation that we
already have a mechanism in place for propagating information
around in the storage service - heartbeats. We can let the
subscription information piggyback on the heartbeat messages
that are already sent around the hash ring. When a server
receives subscription information from its neighbour. It will
compare it with the local subscription information and merge
the information together. For example, if server A has
subscription info “keyl1:[127.0.0.1:6000]” and server B has
subscription info “key1:[127.0.0.1:60001],
key2:[127.0.0.1:60000]” Then when one server send its
subscription information to another, the receiver will update its
local subscription information to “keyl:[127.0.0.1:6000,
127.0.0.1:60001], key2:[127.0.0.1:60000]”. By doing this, if
the server that initially received the subscription request does
not immediately crash before sending out any heartbeat, then
it’s the subscription will live as long as the service lives, even
when new nodes are brought up by admin, it will be fed the
subscription information that is being passed along the hash
ring.

However, this had a side effect of subscriptions never being
able to be deleted by contacting a single server alone. If a
subscription is deleted from a server, it will be simply added by
in the next heartbeat. This problem can only be tackled by
admin as it is one who knows about all the servers that are
active and only it can force the heartbeats to stop and resume.
Thus, I implemented unsubscription by having the client
library send the unsubscribe request to any server it knows in
the storage service. Then, the receiving server will tell admin
about the request. The admin will send a message to all active
servers to temporarily halt all heartbeats. Then it will broadcast
another message to let the servers remove the subscription in
question. Finally, it will broadcast to resume the heartbeat
process.

4. Performance

Performance test methodology: 1 first populated the key store
with 1,000 entries of made up key-value pairs. Then I vary one
variable at a time while hold other variables constant to test the
performance of the storage service under different
configurations. The variable that is varied is the one in each
section title. The other constant variables are configured as
follows: 20 clients, 10 servers, 500 cache size and LFU cache
strategy. The numbers are chosen because they are the median
value for each corresponding experiment. For 4.1, 4.2 and 4.5,
I first record a baseline measurement for a replication factor of
1, i.e. no replication. Then, I do the experiment again using a
replication factor of 3 and compare the results.

4.1 Number of Clients vs. Latency

Table 1. Performance Test Result of Varying Number of
Clients. Replication Factor = 1. Unit: ms/request

1 S 20 50 100
Read [8.284 [14.47 |33.512 |132.34 |182.52
Write [9.35 30.138 180.97 [254.42 [357.9

Clients vs Latency

1 Client 5 Clients 20 Clients 50 Clients 100 Clients

Figure 1. Number of Clients vs. Latency. Replication = 1

From Figure 1, we can see that as the number of clients
increase the latency increases drastically as well. This is
because as the number of client increases, each server has to
handle more requests concurrently, resulting in more

congestion and latency for each request. Furthermore, in
general the write requests take longer than read requests. This
is because write requests require that the server check the
entire key store for duplication whereas read only need to find
the first key match.

Clients vs Latency

1 Client 5 Clients 20 Clients 50 Clients 100 Clients

Figure 2. Number of Clients vs. Latency. Replication = 3

Compared to the result when replication factor = 1, this time
the read speed decreased around 1/2 at high client counts
whereas the write speed maintained the same. This is because
during writes, the client only have 1 choice of server as before.
But during reads, the client has 2 more choices so the read is
distributed more evenly among the servers. In addition, in my
implementation [used eventual consistency. An ack is sent to
the client as soon as the coordinator has written the value to
disk.

4.2 Number of Servers vs. Latency

Table 2. Performance Test Result of Varying Number of
Servers. Replication Factor = 1. Unit: ms/request

1 5 10 50 100
Read [52.79 W¥2.77 [32.85 [25.23 [23.79
Write [101.18 1[90.66 [81.13 |72.30 |70.71

Servers vs. Latency

\

5 Servers 20 Servers 50 Servers 100
Servers

1 Server

Figure 3. Number of Servers vs. Latency. Replication = 1

As shown in Figure 3, as the number of servers increase the
latency decreases. However, the decrease in latency from 50
servers to 100 servers is not proportion to the increase in server
count. This is because we only have 20 clients thus at this point
pretty much every server is handling one request at a time.

Servers vs. Latency

— Read (ms

raq)

Writa(
req)

\

5 8ervers 20 Servers 50 Servers 100
Servers

1 Server

Figure 4. Number of Servers vs. Latency. Replication = 3
Compared to the result when the replication factor = 1, we see
significant read performance gain due to the same reason as the
previous test in section 4.1.

4.3 Cache Strategy Experiment

Table 3. Performance Test Result of Varying Cache Strategy.
Unit: ms/request

FIFO LRU LFU
Read 15.58 14.01 13.14
Write 81.65 72.85 66.52

Latency vs. Cache Strategy

Read(ms/

FIFO LRU LFU

Figure 5. Cache Strategy vs. Latency

From Figure 5, we can conclude that LFU is the fastest cache.
The reason LFU is the fastest is because I designed LFU
myself with efficiency in mind. The FIFO and LRU were
implemented using Java’s built in LinkedHashMap library,
which was not designed solely for caching.

4.4 Add and Remove Node Performance
Table 4 lists our add and remove node performance. Data is
populated evenly across existing servers.

Table 4. Add/Remove Node Completion Time. Replication
Factor = 1. Unit = Seconds.

Servers |1 5 10 50 100
+1 Node [2.582 ([3.011 2.796 [2.816 [2.97
-1 Node [1.593 |1.475 1.350 0.142 |0.011
+5 Node [18.431 |16.311 |14.596 [12.798 [11.264

-5 Node [9.124 [8.747 |7.6 0.289 10.025
+10 Node{40.378 [36.382 [32.034 [28.723 [23.028
-10 Node [9.284 [7.849 [7.844 [1.927 |1.252

Add/Remove Node Peformance

20

15

10

5 H I

0 | H = -

+1 Node -1 Node +5 Node -5 Node +10 Node -10 Node

W] Server 5 Severs 10 Servers 50Servers M 100 Servers

Figure 6. Add/Remove Node Completion Time. R = 1. (s)

From the results above, we can conclude 1) Adding node takes
more time than removing a node. This is because ssh into the
remote machine and wait for the application to boot up takes
time, whereas removing a note need only terminate the remote
process 2) As the node increases, the time it takes to
add/remove node decreases, this is because less data is
transferred between the nodes as each node is responsible for
less data.

40

30

20

: H l

0 u H = -

+1 Node -1 Node +5 Node -5 Node +10 Node -10 Node

W1 Server 5 Severs 10 Servers 50Servers M100 Servers

Figure 7. Add/Remove Node Completion Time. R = 3. (s)

Compared to the result when the replication factor = 1, the time
it takes to add and remove and add node increased dramatically
by around 2x. This is because of the introduction of replication.
Now, whenever there is an add node or remove node operation,
there are at least 4 nodes involved: the node in question and its
3 successors. Thus, more data is moved around hence more
latency.

5. Conclusion and Future Direction

This paper described an implementation of a key-value store
based on lessons learned from Stanford class CS244b. There
are three weaknesses of my design that [am aware but did not
have time to address. First, there is a single point of failure at
the admin. If admin goes down, the service can still function
during normal operation, but a lot of the features would be
unavailable such as add/remove nodes, malicious server

6

detection and failure detection and auto recovery. Ideally, the
admin should be highly available like Chubby or ZooKeeper.
Second, when moving data, key-value pairs are sent one by one
in separated messages. This is purely due to implementation
easiness. A better solution here is to wrap all key-values to
transfer into a single message. Lastly, in order to unsubscribe
the admin has to send messages to all servers. A better solution
is to pass unsubscribe messages around like subscription
messages.

6. References

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels. Dynamo: Amazon’s highly available key-value store.
In Proc. 21st ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2007.

