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Abstract 
Built a fault-tolerant and strongly-consistent key/value storage       
service using the existing RAFT implementation. Add ACID        
transaction capability to the service using a 2PC variant. Build          
on the raftexample[1] (available as part of etcd) to add atomic           
transactions. This supports sharding of keys and concurrent        
transactions on sharded KV Store. By Implementing a        
transactional distributed KV store, we gain working knowledge        
of different protocols and complexities to make it work together. 
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I. INTRODUCTION 
Distributed KV stores have become a norm with the         
advent of microservices architecture and the NoSql       
revolution. Initially KV Store discarded ACID properties       
from the Database world. Nowadays with a lot of         
applications requiring transactional properties    
(ex.Bitcoin) and also to take advantage of the distributed         
nature of the systems, a lot of Databases are designed          
with ACID properties with the underlying store being a         
distributed KV Store. CockroachDB, TinyKV are few       
examples. [2, 3]. We wanted to explore what it involves          
to implement such a system and learn from that. We          
have organised this paper with the following topics :         
Architecture,Transaction,Performance,Evaluation,Learni
ng and Future Work.. 

II. ARCHITECTURE 
Our ACID compliant Distributed Infrastructure     
Architecture is inspired by Spanner[4], CockroachDB,      
TinyKV. At a high level[fig1], a 2PC Coordinator (         
Transaction Manager) is distributed and backed by Raft        
Consensus protocol. The Key range is split into different         
shards and are replicated in as many servers (called as          
Replica Server) as available. Raft consensus protocol is        
run between the shards and it elects the leaders for each           
shard. In our model, each transaction is carried out by          
the respective Shard leaders. An Alternative model is to         
send the transactions to all members of the shards and          
once the majority of the cohorts for that shard returns,          
decide on the outcome of that transaction.[5]. We        
decided to go with the “shard leader” model as we          

thought that would be easier to implement. All        
components run http and grpc endpoints. Http endpoints        
are for debugging/configuration. Grpc Endpoints are      
used for communication between components. 
Replica Manager (RM): RM is the service discovery        
part of the system. RM is initiated with each of the           
Replica Servers available in the system. Users have to         
instantiate the RM with the number of shards that the          
user wants the key to be split into. Currently we cannot           
dynamically change while RM is running. New Replica        
Servers cannot be added or removed from once RM is          
up and running. However Replica Servers can go down         
and come back and RM can detect this. Each Shard          
Leader updates the information to RM, while the DTM         
leader updates its information to the RM. Clients and         
DTM query for the DTM leader, Shard leader        
respectively. 
Distributed Transaction Manager(DTM) : DTM is      
responsible for driving the Two Phase Commit. Clients        
interact with the RM to get information about the DTM          
leader. A DTM leader can process multiple transactions        
concurrently. DTM runs raft among its peers to elect the          
leader, log the 2PC messages. We can dynamically add         
or remove transaction managers while the system is        
running. 
Store : Each replica server runs a store process. It is           
responsible for receiving shard information from RM,       
handling transactions from a DRM leader and to run         
Raft protocol for each of the shards that is deployed in           
the replica server. 

III. ACID Transactions 
Our implementation of ACID took inspiration from       
spanner and cockroach db. Two Phase Commit (2PC)        
provides atomicity and two phase locking (2PL) is used         
for Isolation. We rely on clients for consistency of the          
data and Durability is provided by storage of the RAFT          
example.  

Raft leader is the transaction coordinator for the        
transaction and relies on the leader to make changes to          
the state of transaction. Raft ensures replication of        
transaction state to peer nodes. 2PC inherently has        
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performance overhead so we did some tweaks to        
simplify implementation without compromising on     
consistency. We follow the regular PREPARE phase and        
once outcome is decided for the transaction, write it into          
a raft based log and immediately return the transaction         
result to the client without waiting for the writes to be           
reflected in the store. Modifying the final state of a          
transaction on cohorts is done by worker thread.        
Multiple dedicated worker threads are configured to       
abort/commit transactions. We implement PrC     
(Presumed Commit) optimization of 2PC[6]. We write  

      Fig 1: System architecture 
 

two log records, one initiation record and second commit         
record. On COMMIT of transaction, deleting entry from        
the record reduces log footprint.  

2PL[7] is implemented with adding write intent for        
each key along with read-write locks for concurrent        
access. Accessing read-write lock is mandatory for       
accessing any fields of value. A write transaction takes         
the write lock and stages the value on write intent in the            
PREPARE stage if it’s empty. If write intent is         
occupied, the transaction goes into conflict resolution.       
The current transaction queries the state of the staged         
transaction with a gRPC call to the transaction        
coordinator. If the outcome of a staged transaction is a)          
PENDING, would abort the current transaction since a        
concurrent inflight transaction has taken lock on it. b)         
COMMIT/ABORT, current transaction would execute     
the outcome on kvstore and stage itself onto write intent.          
This process termed as resolving transaction conflict.       
Figure 3 shows the resolving transaction conflict in        
action. We think this additional overhead is caused in         

few of the transactions as DTM worker threads clear the          
intents in background and concurrent transactions are       
expected to take performance hits due to the nature of it.           
If the background thread sees an already       
committed/aborted transaction(conflict resolve might    
have happened before) it will return success to DTM         
without changing any state in the KV store. 

Crash recovery in the coordinator is handled with a          
timer for each transaction. On recovery, the leader at that          
term would go over all the pending transactions and         
upon elapsed time greater than timeout aborts the        
transactions. Currently we have transaction timeout set       
to 5s. At cohort, on crash inflight transactions will be          
cancelled and relies on RAFT to recover the store state.          
We take snapshots of transaction records at DTM and         
key-value stores to reduce the time for recovery.  
  
 

 
Fig 2: Simple write-only transaction  

 
Key-value store supports read-write, write-only and      
read-only transactions. All types of transactions are       
handled by the store leader. Figure 2 goes over the flow           
of simple write only transactions without conflicts. This        
assumes DTM already has information about shards       
involved in the transaction from the replica manager.        
DTM establishes a gRPC connection with required       
shards while executing operations. In read operations       
with conflict, we check the transaction ID of the staged          
transaction with the current transaction. Since we use        



monotonically increasing IDs. If a current transaction ID        
is greater than staged transaction ID then it would call          
transaction conflict resolve to decide the result else it  
 

 
Fig 3: Concurrent transactions, resolving transaction conflict 

 
returns the last committed value. If a transaction tries to          
read the previously written value in the same transaction,         
it returns the last committed value. The datastore does         
not support multiple writes of the same key in a          
transaction.  

IV. PERFORMANCE EVALUATION 

We deployed the system in Amazon EC2 instances. All         
the instances were in the same region. We were able to           
scale up to 7 Replica Servers with 3 TMs and 1 Replica            
Manager. In all the test cases, keys are numbers and          
values are their english words.  

A.Throughput 

Throughput is calculated as the number of transactions        
per Second. Clients are run for 1000 txns as         
go-routine(for concurrency) with txn per routine. We       
varied the number of operations per transaction over        
3,5,7 Replica servers and 1,3 TM with 3,5,7 Shards. 

As the number of operations per transaction increased,         
the throughput decreased for both read and write        
transactions [Table 1] as the keys in each operation had          
to be committed across multiple shards. As a future         

work, we should implement reads by reading from any         
shard member. This would improve in read performance. 
  

          TABLE 1 AVG TXNPER SECOND FOR 3 KV 3TX 5 SHARDS 

op/txns Without logs 
Read Write 

3 290 250 
10 130 120 

20 90 80 

 

Varying the number of shards we saw a throughput         
impact with 7 shards(Fig 4). However when we disabled         
the logs, the same was not observed. Probably with logs          
disabled, we might observe the same behaviour at higher         
number of shards.This is something that needs to be         
investigated further. 

B.Latency 

Read/Write Latency is measured in a 3 Replica Server         
setup with 1 Tx managers with 3 Shards for 500 txns           
sequentially. We are measuring latency as time taken to         
get a response from the Transaction Manager for an         
outcome. 

Write Latency ranged between 18 - 22 ms per          
transaction.On a non-leader crash, transactions are not       
impacted significantly. [Fig 5]. If we crash a        
replica-server,which is the KV leader for all the shards         
in the system, we saw that 2% of the transactions          
resulted in ~200 ms latency[Fig 6] and those 2%         
transactions failed. We observed latency on leader crash        
depending on how the shard leaders are chosen. If shard          
leaders are different for different shards, then one or two          
transactions are affected. On killing one shard leader we         
saw the write latency to be 9000 ms. Read Latency          
ranged between 15 - 20ms per transaction.[Fig 7]  

Number of TM affects the latency as well. We          
increased the TransactionManagers(TM) to 3 TM and       
we saw that the write latency went up to 30 ms. [Fig 8]             
On crashing the TM Leader, around 30% of the         
transactions failed. We did our experiment with 2000        
txns and saw more than 600 txns fail [Fig 9] Crashing           
the non-leader TM or bringing up the crashed leader did          
not impact the transactions. 

 



 
                               Fig 4. Throughput with logs enabled. 

V. LEARNINGS  
Initially we overlooked the need for service        

discovery. We could have used something like       
etcd/consul for discovery. Using these services could       
have helped us to focus on adding other features to the           
system instead of writing our own RM. Client        
interactions are done via http client. We believe        
performance would have improved if we had used        
gRPC. Implementation of 2PC is more challenging than        
expected in crash recovery and leader change.  

  

 

 Fig. 5 Write Latency with Non Shard Leader Crash 

 
                          VI. FUTURE WORK  

This project was a good experience to understand        
various components of a distributed system and the        
challenges involved in implementing them. We would       
like to explore the possibility of using MVCC for         
isolation and compare the performance with the TWo        
Phase Locking. We would like to try a unified         
consistency and atomicity model[5] and compare the       

performances. To improve read performance, we can       
implement reading from any shards. We want to use         
consistent hashing as a future extension and enable        
support for dynamic rebalancing of the nodes.       
Performance numbers from nodes across geographical      
regions are not evaluated in our current project.        
Potentially that will change the performance numbers.       
Also, we would like to collect more performance        
measurements such as tail latencies. 

 
  

 
 
 
 

 
 
 
 
 
 
 
  

 

 

 

Fig 6 Latency with Shard Leader Crash 

  

  

  

 

 

      Fig.7. Read Latency  

 

 



 

 

  

  

  

 

 

 

 

 

 

               Fig 8- Write Latency with 3 Txn Manager 

 

 

 

 

 

 

 

 

 

 

 

 

        Fig 9-Write Latency with leader crash  3 Txn Manager 

                                 VII.CONCLUSIONS 
We were able to implement an in-memory KV store         
which is distributed. We were able to add transactions         
on top of the KV store. In the process of implementing           
such a system we understood different moving parts in a          
typical distributed system. We learnt how availability       
and scaling affects the performance. Network      
performance plays a role in application performance. We        
got a better understanding of some of the concepts such          
CAP vs ACID, consistency and different kinds of        
isolation.  
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