
 ACID Compliant Distributed Key-Value Store
Lakshmi Narasimhan Seshan#1, Rajesh Jalisatgi#2, Vijaeendra Simha G A#3

#1lsimhan.cse@gmail.com
#2rajeshjalisatgi@gmail.com

#3vijaeendra@gmail.com

Abstract
Built a fault-tolerant and strongly-consistent key/value storage
service using the existing RAFT implementation. Add ACID
transaction capability to the service using a 2PC variant. Build
on the raftexample[1] (available as part of etcd) to add atomic
transactions. This supports sharding of keys and concurrent
transactions on sharded KV Store. By Implementing a
transactional distributed KV store, we gain working knowledge
of different protocols and complexities to make it work together.

Keywords— ACID, Key-Value, 2PC, sharding, 2PL Transaction

I. INTRODUCTION
Distributed KV stores have become a norm with the
advent of microservices architecture and the NoSql
revolution. Initially KV Store discarded ACID properties
from the Database world. Nowadays with a lot of
applications requiring transactional properties
(ex.Bitcoin) and also to take advantage of the distributed
nature of the systems, a lot of Databases are designed
with ACID properties with the underlying store being a
distributed KV Store. CockroachDB, TinyKV are few
examples. [2, 3]. We wanted to explore what it involves
to implement such a system and learn from that. We
have organised this paper with the following topics :
Architecture,Transaction,Performance,Evaluation,Learni
ng and Future Work..

II. ARCHITECTURE
Our ACID compliant Distributed Infrastructure
Architecture is inspired by Spanner[4], CockroachDB,
TinyKV. At a high level[fig1], a 2PC Coordinator (
Transaction Manager) is distributed and backed by Raft
Consensus protocol. The Key range is split into different
shards and are replicated in as many servers (called as
Replica Server) as available. Raft consensus protocol is
run between the shards and it elects the leaders for each
shard. In our model, each transaction is carried out by
the respective Shard leaders. An Alternative model is to
send the transactions to all members of the shards and
once the majority of the cohorts for that shard returns,
decide on the outcome of that transaction.[5]. We
decided to go with the “shard leader” model as we

thought that would be easier to implement. All
components run http and grpc endpoints. Http endpoints
are for debugging/configuration. Grpc Endpoints are
used for communication between components.
Replica Manager (RM): RM is the service discovery
part of the system. RM is initiated with each of the
Replica Servers available in the system. Users have to
instantiate the RM with the number of shards that the
user wants the key to be split into. Currently we cannot
dynamically change while RM is running. New Replica
Servers cannot be added or removed from once RM is
up and running. However Replica Servers can go down
and come back and RM can detect this. Each Shard
Leader updates the information to RM, while the DTM
leader updates its information to the RM. Clients and
DTM query for the DTM leader, Shard leader
respectively.
Distributed Transaction Manager(DTM) : DTM is
responsible for driving the Two Phase Commit. Clients
interact with the RM to get information about the DTM
leader. A DTM leader can process multiple transactions
concurrently. DTM runs raft among its peers to elect the
leader, log the 2PC messages. We can dynamically add
or remove transaction managers while the system is
running.
Store : Each replica server runs a store process. It is
responsible for receiving shard information from RM,
handling transactions from a DRM leader and to run
Raft protocol for each of the shards that is deployed in
the replica server.

III. ACID Transactions
Our implementation of ACID took inspiration from
spanner and cockroach db. Two Phase Commit (2PC)
provides atomicity and two phase locking (2PL) is used
for Isolation. We rely on clients for consistency of the
data and Durability is provided by storage of the RAFT
example.

Raft leader is the transaction coordinator for the
transaction and relies on the leader to make changes to
the state of transaction. Raft ensures replication of
transaction state to peer nodes. 2PC inherently has

mailto:1lsimhan.cse@gmail.com
mailto:1lsimhan.cse@gmail.com
mailto:2rajeshjalisatgi@gmail.com
mailto:2rajeshjalisatgi@gmail.com

performance overhead so we did some tweaks to
simplify implementation without compromising on
consistency. We follow the regular PREPARE phase and
once outcome is decided for the transaction, write it into
a raft based log and immediately return the transaction
result to the client without waiting for the writes to be
reflected in the store. Modifying the final state of a
transaction on cohorts is done by worker thread.
Multiple dedicated worker threads are configured to
abort/commit transactions. We implement PrC
(Presumed Commit) optimization of 2PC[6]. We write

 Fig 1: System architecture

two log records, one initiation record and second commit
record. On COMMIT of transaction, deleting entry from
the record reduces log footprint.

2PL[7] is implemented with adding write intent for
each key along with read-write locks for concurrent
access. Accessing read-write lock is mandatory for
accessing any fields of value. A write transaction takes
the write lock and stages the value on write intent in the
PREPARE stage if it’s empty. If write intent is
occupied, the transaction goes into conflict resolution.
The current transaction queries the state of the staged
transaction with a gRPC call to the transaction
coordinator. If the outcome of a staged transaction is a)
PENDING, would abort the current transaction since a
concurrent inflight transaction has taken lock on it. b)
COMMIT/ABORT, current transaction would execute
the outcome on kvstore and stage itself onto write intent.
This process termed as resolving transaction conflict.
Figure 3 shows the resolving transaction conflict in
action. We think this additional overhead is caused in

few of the transactions as DTM worker threads clear the
intents in background and concurrent transactions are
expected to take performance hits due to the nature of it.
If the background thread sees an already
committed/aborted transaction(conflict resolve might
have happened before) it will return success to DTM
without changing any state in the KV store.

Crash recovery in the coordinator is handled with a
timer for each transaction. On recovery, the leader at that
term would go over all the pending transactions and
upon elapsed time greater than timeout aborts the
transactions. Currently we have transaction timeout set
to 5s. At cohort, on crash inflight transactions will be
cancelled and relies on RAFT to recover the store state.
We take snapshots of transaction records at DTM and
key-value stores to reduce the time for recovery.

Fig 2: Simple write-only transaction

Key-value store supports read-write, write-only and
read-only transactions. All types of transactions are
handled by the store leader. Figure 2 goes over the flow
of simple write only transactions without conflicts. This
assumes DTM already has information about shards
involved in the transaction from the replica manager.
DTM establishes a gRPC connection with required
shards while executing operations. In read operations
with conflict, we check the transaction ID of the staged
transaction with the current transaction. Since we use

monotonically increasing IDs. If a current transaction ID
is greater than staged transaction ID then it would call
transaction conflict resolve to decide the result else it

Fig 3: Concurrent transactions, resolving transaction conflict

returns the last committed value. If a transaction tries to
read the previously written value in the same transaction,
it returns the last committed value. The datastore does
not support multiple writes of the same key in a
transaction.

IV. PERFORMANCE EVALUATION

We deployed the system in Amazon EC2 instances. All
the instances were in the same region. We were able to
scale up to 7 Replica Servers with 3 TMs and 1 Replica
Manager. In all the test cases, keys are numbers and
values are their english words.

A.Throughput

Throughput is calculated as the number of transactions
per Second. Clients are run for 1000 txns as
go-routine(for concurrency) with txn per routine. We
varied the number of operations per transaction over
3,5,7 Replica servers and 1,3 TM with 3,5,7 Shards.

As the number of operations per transaction increased,
the throughput decreased for both read and write
transactions [Table 1] as the keys in each operation had
to be committed across multiple shards. As a future

work, we should implement reads by reading from any
shard member. This would improve in read performance.

 TABLE 1 AVG TXNPER SECOND FOR 3 KV 3TX 5 SHARDS

op/txns Without logs
Read Write

3 290 250
10 130 120

20 90 80

Varying the number of shards we saw a throughput
impact with 7 shards(Fig 4). However when we disabled
the logs, the same was not observed. Probably with logs
disabled, we might observe the same behaviour at higher
number of shards.This is something that needs to be
investigated further.

B.Latency

Read/Write Latency is measured in a 3 Replica Server
setup with 1 Tx managers with 3 Shards for 500 txns
sequentially. We are measuring latency as time taken to
get a response from the Transaction Manager for an
outcome.

Write Latency ranged between 18 - 22 ms per
transaction.On a non-leader crash, transactions are not
impacted significantly. [Fig 5]. If we crash a
replica-server,which is the KV leader for all the shards
in the system, we saw that 2% of the transactions
resulted in ~200 ms latency[Fig 6] and those 2%
transactions failed. We observed latency on leader crash
depending on how the shard leaders are chosen. If shard
leaders are different for different shards, then one or two
transactions are affected. On killing one shard leader we
saw the write latency to be 9000 ms. Read Latency
ranged between 15 - 20ms per transaction.[Fig 7]

Number of TM affects the latency as well. We
increased the TransactionManagers(TM) to 3 TM and
we saw that the write latency went up to 30 ms. [Fig 8]
On crashing the TM Leader, around 30% of the
transactions failed. We did our experiment with 2000
txns and saw more than 600 txns fail [Fig 9] Crashing
the non-leader TM or bringing up the crashed leader did
not impact the transactions.

 Fig 4. Throughput with logs enabled.

V. LEARNINGS
Initially we overlooked the need for service

discovery. We could have used something like
etcd/consul for discovery. Using these services could
have helped us to focus on adding other features to the
system instead of writing our own RM. Client
interactions are done via http client. We believe
performance would have improved if we had used
gRPC. Implementation of 2PC is more challenging than
expected in crash recovery and leader change.

 Fig. 5 Write Latency with Non Shard Leader Crash

 VI. FUTURE WORK

This project was a good experience to understand
various components of a distributed system and the
challenges involved in implementing them. We would
like to explore the possibility of using MVCC for
isolation and compare the performance with the TWo
Phase Locking. We would like to try a unified
consistency and atomicity model[5] and compare the

performances. To improve read performance, we can
implement reading from any shards. We want to use
consistent hashing as a future extension and enable
support for dynamic rebalancing of the nodes.
Performance numbers from nodes across geographical
regions are not evaluated in our current project.
Potentially that will change the performance numbers.
Also, we would like to collect more performance
measurements such as tail latencies.

Fig 6 Latency with Shard Leader Crash

 Fig.7. Read Latency

 Fig 8- Write Latency with 3 Txn Manager

 Fig 9-Write Latency with leader crash 3 Txn Manager

 VII.CONCLUSIONS
We were able to implement an in-memory KV store
which is distributed. We were able to add transactions
on top of the KV store. In the process of implementing
such a system we understood different moving parts in a
typical distributed system. We learnt how availability
and scaling affects the performance. Network
performance plays a role in application performance. We
got a better understanding of some of the concepts such
CAP vs ACID, consistency and different kinds of
isolation.

REFERENCES
[1] https://github.com/etcd-io/etcd/tree/master/contrib/raftexample
[2] Matt Tracy, How CockroachDB does distributed atomic transactions,

September 2, 2015
[3] https://github.com/pingcap-incubator/tinykv
[4] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,

Christopher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian
Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay
Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth
Wang, Dale Woodford Google, Inc. Spanner: Google’s
Globally-Distributed Database

[5] Sujaya Maiyya, Faisal Nawab, Divyakant Agrawal, Amr El Abbadi.
Unifying Consensus and Atomic Commitment for Effective Cloud
Data Management. PVLDB, 12(5): 611-623, 2019. DOI:
https://doi.org/10.14778/3303753.3303765

[6] Butler Lampson and David Lomet, A new Presumed Commit
Optimization for Two Phase Commit, 19th VLDB conference, Dublin
Ireland, 1993.

[7] N.B. Al-Jumah, H.S. Hassanein, et. al Implementation and modelling
of two-phase locking concurrency control- a performance study,
Information and Software Technology, 1999

https://github.com/etcd-io/etcd/tree/master/contrib/raftexample
https://github.com/pingcap-incubator/tinykv

