
Append-only Datastore

Mingyan Zhao
myzh@stanford.edu

Steven Tung
steven.tung@stanford.edu

Kevin Krakauer
kevinkrakauer@gmail.com

Abstract

We built an eventually consistent, append-only
datastore focused on low read/write latency and
high availability. In the common case, clients in-
teract only with nearby nodes for extremely low
latency. Data is always appended to the store
for a given key and the relative order of observed
data is maintained.

The datastore is eventually consistent. Data
is stored in memory for low latency and in local
disk for safety. Nodes can operate when discon-
nected from the system, preserving availability
in the face of total and long-term partitioning.
We believe this system will be useful in chat, so-
cial media, and distributed logging applications.

1 Introduction

As organizations increasingly move to the cloud,
applications are designed from the ground up
with a distributed architecture (microservices).
Despite numerous advantages, distributed ap-
plication design requires addressing latency and
partitioning concerns that monolithic applica-
tions do not have.

Our append-only datastore addresses latency
and partitioning concerns for append-only work-
loads. It is designed to run as a service dis-
tributed globally across multiple data centers.
By explicitly distinguishing between a leader
node and follower nodes, we gain several advan-

tages over other eventually consistent systems:

1. Clients communicate only with their nearest
follower for extremely low latency.

2. Eventual consistency is minimally disrup-
tive to clients. A client may read the data
for key k and receive data consisting of 2
writes’ data: {d1, d2}. Write x with data
dx sent through another follower preserves
the ordering of d1 and d2, so the system
eventually returns {dx, d1, d2}, {d1, dx, d2},
or {d1, d2, dx} when read.

We also gain the advantages of some more tradi-
tionally eventually consistent systems, such as
great partition tolerance [1]. Together, these
properties are highly desirable for many append-
only applications. Consider the following:

� Distributed logging - Consider a moni-
toring service using the append-only datas-
tore for logs in real time. The service writes
and retrieves logs with extremely low la-
tency from the nearby data center. Also it
is provided an eventually consistent log that
contains data from all of the deployments.

� Chat Application - Consider a chatroom
occupied by a team in North America and a
team in Asia. Each team member sees their
local peers’ messages immediately, and all
messages eventually.

1



2 Related Work

Amazon’s Dynamo [1] supports always-writable
semantics, high partition tolerance, and laser-
focuses on low-latency operation. Unlike our
system, Dynamo is a key-value store. It also
exposes a great deal of complexity to develop-
ers, who must tailor their use of Dynamo such
that conflicts are resolvable and must manually
implement conflict resolution in clients. Our sys-
tem does not allow for conflicts. Google’s GFS
[2] is also optimized for append-heavy workloads
and uses a single master for simplicity and intel-
ligent coordination. It supports random writes
as well. However, it is explicitly optimized for
non-latency-sensitive applications, and a single
read can require multiple hops (the GFS master
and chunkserver). LinkedIn’s Kafka [3] provides
eventual delivery of large quantities of data, but
running under a publish/subscribe mechanism.

3 Design

Nodes in the append-only datastore are classi-
fied in a simple hierarchy as seen in Figure 1. A
single leader directs multiple followers. Clients
connect to and communicate with a nearby fol-
lower, likely running in the same data center, to
minimize latency. Our design tolerates arbitrary
partitions between nodes and ensures an eventu-
ally consistent view of data. Clients are exposed
to the following API by followers:

� append(key, data) - Appends data to the
existing data for key. Guarantees that data
will be committed eventually if it is written
to local disk.

� get(key) - Gets the data for key, repre-
sented as a list of values. Later calls to get

Partitioned
Leader

Client

Client Client

Client

Client
Update

Update

Follower A

Follower B Follower C

Sync
Sync

Update

Sync

Figure 1: Architecture

return data in the same relative order, but
other data may be interleaved or appended.

3.1 Leader

The leader is responsible for globally ordering
writes for each key. Like GFS’s master [2], it
only stores metadata rather than the value itself.
This decreases network usage. Also, the burden
on disks is lighter per update, increasing writes
per second and the average lifetime of each disk.
The simplicity of a single master simplifies our
implementation and the rest of our design, which
increases the overall stability of the system.

3.1.1 Index number

The leader maintains the latest index number for
all keys. Index numbers are globally unique and
monotonically increasing. Once generated, each
is mapped to a list of values on the requesting
follower. If another follower needs that value, it
simply needs the index number to fetch the data.

3.1.2 Update

Upon receiving an Update request, the leader ad-
vances the index number by one and updates the
follower information to the incoming one.

2



The Leader decides whether the requesting
follower needs to sync up with other followers.
If a mapping exists from key k to index i, an
Update carrying the same index i does not need
a Sync (i still increments by 1). This may hap-
pen when 1) a key created on the leader for the
first time, or 2) the requesting follower is the
same as the recorded follower for the key.

An Update to i′ < i indicates that the sender
does not have the latest data. In this case the
leader signals the follower to sync with the fol-
lower in its records that originated the append
at index i. This may happen when two followers
are append data to the same key concurrently.
The common, non-concurrent case is shown in
Figure 2. Since Follower 4 only has index 5 for
”key-2”, the Leader will indicates Follower 4

to sync up with Follower 1 for index 6, 7, 8 ,9.

Key-2 index: 9
Follower: 1

Update RPC
Key-2
Follower: 4
index: 5

Key-2 index: 10
Follower: 4

Figure 2: Update procedure

3.1.3 Broadcasting index numbers

The leader broadcasts ensure the eventual con-
sistency of the system. Each appended value gets
replicated and synced immediately between the
requesting followers and in-record follower, but
all of the other followers do not know it until the
leader broadcasts the latest index number.

Depending on the workload and use cases, we
provide different ways of broadcasting. One is
triggered per-request, which is expected to pro-

vide lower consistency latency but may only be
used in a lower QPS scenario, since the broad-
casting may cause a great amount of communi-
cation between the followers. The other one is
triggered periodically, which is expected to be
used in most cases. The leader broadcasts the
updated keys and their index numbers repeat-
edly at a small, set interval.

3.1.4 Leader Fault Tolerance

Because the leader writes all updates to disk, it
tolerates crashes and reboots. For greater fault
tolerance, it should write to multiple disks or a
remote disk as well.

The system continues to function when the
leader is partitioned, but followers and thus
clients do not receive updates from other fol-
lowers. As long as the partition is eventually
healed, the system will propagate information
correctly and self-heal. If for some reason there
is a permanent partition, it must be manually
worked around by changing the cluster configu-
ration (i.e. the set of nodes in the system).

3.2 Follower

The follower is our most critical component. Its
responsibilities include:

� Handing append and get requests.
� Managing data.
� Updating the leader about appended data.
� Syncing with other followers to communi-

cate updates and orderings.

3.2.1 Data structure

Followers replicate the entire datastore in mem-
ory to minimize reading and writing latency.
The data structure is described in Figure 3.

3



Key-2

index: 1
index: 2
index: 3

Value1: foo Value2: bar Value3: baz
Value1: abc
Value1: 123 Value1: 456

index: 1 Value1: hello

Pre-update-buffer

Pre-update-buffer

Key-1

Figure 3: Data procedure on Follower

3.2.2 Client Interfaces

Append(key, data): Upon reviving an Append

request, the follower writes the data to mem-
ory first and then writes to a local disk for data
safety. It returns immediately after the data is
written to local disk. For increased fault tol-
erance, the append should be written to multi-
ple disks locally or to a remote disk. Note that
throughout this section when we refer to updat-
ing local storage, the in-memory store is also up-
dated immediately after data is written to disk.

The follower always appends the input data
to the pre-update-buffer first, then issues an
Update asynchronous, if the pre-update-buffer is
not empty. When it receives an Update response
with a index number, it creates a new index entry
and moves all of the data from pre-update-buffer
to the new entry.

Get(key): When clients issue a Get request,
they are served from the in-memory datastore.
We guarantees that the data read by the clients
are correct, but not necessarily yet globally con-
sistent. The follower builds up a list with all of
the data from each index as well as everything
from the pre-update-buffer.

3.2.3 Synchronization

Followers use the Sync request to get data they
missed. This ensures the eventual consistency

of the system. Sync requests also signal what
data the sender has to the recipient, enabling
the recipient to create new index entries in its
local datastore. The Sync request is issued when
a follower receives an Update response from the
leader indicating it needs synchronization.

Since a follower may missing multiple indices
of data, a Sync request may carry a list of indices
that it is asking for. However the recipient may
also be missing some of the indices if there is a
large amount of Sync requests in flight simul-
taneously. To mitigate this, the Sync response
only replies with indices and data the recipient
already has, so that the issuer can accept what is
returned and do another Sync asking for what is
left. Eventually, each follower synchronizes with
and achieves global consistency.

Combined with the Update requests, Figure 4
demonstrates a message flow of synchronization
in common case.

Figure 4: Update and Sync message flow

4



3.2.4 Follower Fault Tolerance

Both Update and Sync requests are retried in
case of network failure. If a follower reboots dur-
ing a update, it can inspect the disk at boot and
see that it has appended data locally that has
not been confirmed by the leader. If a follower
reboots during a sync, it will have stale data
until a get or append causes it to update. This
keeps the system simple while retaining its con-
sistency properties.

4 Evaluation

The system is written in Golang and can be run
manually or distributed and run with Docker.
Nodes communicate via gRPC.

We ran tests with a cluster of Google Com-
pute Engine virtual machines. Google Cloud
platform provides internal IP communication be-
tween VM instances, which means request be-
tween servers do not go through the public In-
ternet and are thus fast. We deployed our system
in the following locations.

� One leader in Iowa, Central USA.

� One follower and one client in each of the
following five locations

– Iowa, central USA.

– Los Angeles, west USA.

– South Carolina, east USA.

– London, west Europe.

– Tokyo, northeast Asia.

In the performance test, each client sends
120,000 Append against 10 keys randomly, so
that in total there are 600,000 values in the data-
store globally. After all of the Appends are done,
each client then retrieves the data by issuing Get

for the 10 keys every 0.5 second periodically.

4.1 Append Request Performance

We measures the Append request latency in Ta-
ble 1. The result shows that Append is extremely
fast, about 7.5 milliseconds on average. By de-
sign, the 600,000 requests are done in a little less
than 1 second due to appending only involving
communication with a single node.

Location S. C. Tokyo Iowa London L.A.
1 Req 8.06 7.91 8.23 7.82 7.94
600k Req 967.62 948.72 988.00 938.75 952.92

Table 1: Append request latency in millisecond
(S.C. for South Carolina, L.A. for Los Angeles)

4.2 Eventual consistency

One critical result is the eventual consistency,
since this is what we trade off for the low la-
tency read and write. The result is shown in
Figure 5(a). After 0.5 seconds, all of the follow-
ers have already begun syncing with each other
and received some of the data from each other.
The start point is different since the clients were
started sequentially. After 2.0 seconds, the fol-
lower deployed in South Carolina finished syn-
chronization and received all of the 600,000 val-
ues. After 3.5 seconds, all of the follower held
all of the data and the system reached eventual
consistency.

4.3 Get Request Performance

The perfomance of the Get is shown in Fig-
ure 5(b). Latency starts differently because the
Follower held different amount of data. After
3.5 seconds, the latency of different Followers
converged to between 90 milliseconds and 100
milliseconds. Note that the implementation of
Get could be optimized to achieve better perfor-
mance.

5



531848

584996
599660 600000 600000 600000 600000

420429

474310

527978

589262
599990 600000 600000

328407

381278

441894

509310

585083
599117 600000

Seconds after 600000 "Append" requests sent globally

N
um

be
r o

f t
ot

al
 "v

al
ue

"

300

350

400

450

500

550

600

650

(+0.5s) (+1.0s) (+1.5s) (+2.0s) (+2.5s) (+3.0s) (+3.5s)

South Carolina Tokyo Iowa London Los Angeles

(a) Eventual Consistency Delay

Seconds after 600000 "Append" requests sent globally

"G
et

" r
eq

ue
st

 d
el

ay
 in

 m
ill

is
ec

on
ds

20

30

40

50

60

70

80

90

100

110

120

130

(+0.5s) (+1.0s) (+2.0s) (+2.5s) (+3.0s) (+3.5s) (+4.0s) (+4.5s) (+5.0s)

South Carolina Tokyo Iowa London Los Angeles

(b) Get Request Latency.

Figure 5: Performance Test Result

5 Future Work

We could greatly increase throughput by pro-
viding a client library (rather than a raw GRPC
interface) that is aware of the indices or latest
index it holds. This would enable followers to
selectively return only the few pieces of data a
client is missing rather than all the data.

To increase fault tolerance, we have discussed
making each follower and the leader their own
small cluster of consensus nodes. This would
greatly increase fault tolerance and, while it may

complicate the system, would not complicate
clients or the protocols via which nodes commu-
nicate.

Lastly, there may be cases where followers fail
or are partitioned from their nearby clients. In
these cases, we would like to explore whether
clients can fall back to another follower.

6 Conclusions

We built a datastore to provide low latency and
high availability for append-only data storage.
While this work is tailored to a specific set of
workloads, there are numerous applications that
can benefit from this approach.

Our system can be used to support distributed
services such as distributed monitoring and chat
applications with high performance. Impor-
tantly, it exposes a simple interface allowing for
simple clients. We believe that this makes it a
useful tool in building distributed and microser-
vice systems.

References

[1] DeCandia, Hastorun, Jampani, Kakulap-
ati, Lakshman, Pilchin, Sivasubramanian,
Vosshall, and Vogels, “Dynamo: Amazon’s
highly available key-value store,”

[2] Ghemawat, Gobioff, and Leung, “The google
file system,”

[3] Kreps, Narkhede, and Rao, “Kafka: a dis-
tributed messaging system for log process-
ing,”

6


