
Applying a deterministic approach for distributed systems black-box testing

Edward Lee
Stanford University

edlee1@stanford.edu

Ivan Levchenko
Stanford University

vanya203@gmail.com

Abstract
Many existing distributed testing frameworks rely on random-
ized testing to identify issues. This makes reproducing such
defects difficult since they are unable to replay the sequence
of events that lead to the issue in the first place. And most
frameworks that do allow for deterministic settings make
many strong assumptions surrounding how the program is
designed. We introduce a new testing framework that can be
placed below any black-box distributed system implementa-
tion with very little modification to the implementation. It
provides a deterministic, pattern-recognition-based approach
to exploring the system’s state space and is able to replay
sequences of events that can lead to defects.

We implement a prototype of our framework on Linux,
and evaluate the prototype on a self-implemented Raft im-
plementation. The approach seems promising, though more
work is required to evaluate the framework’s effectiveness on
third-party systems.

1 Introduction

Distributed systems have risen in popularity to meet demands
for high availability and resilience to individual node failures,
as well as network partitions [10]. However, the distributed
nature of such systems can often lead to complex edge-cases
and failure modes. Consensus protocols like Paxos and Raft
are especially renowned for being difficult to understand and
their implementations tricky to get right [6, 9].

Testing frameworks have thus sprung up in an attempt to
test such complex systems. Some well-known frameworks
currently used in industry include Jepsen [1] and Chaos Mon-
key [2]. While such systems can do a good job in identifying
many consistency issues in existing distributed systems, there
are a few caveats:

• It can be difficult to replicate potential defects identified
due to the random and non-deterministic nature of the
system [4].

• Such systems may require lengthy time investment into
identifying appropriate tests and preparing these tests. In
Jepsen’s case, for example, many often enlist the help of
its creator to construct and run such tests.

• Due to the randomized nature of such frameworks, it
can be difficult to ascertain what states the framework
has explored, and may take a lot of time to arrive at
potentially interesting states.

We attempt to resolve such problems and more by construct-
ing a testing framework that can be semi-transparently gen-
erate deterministic runs of a provided distributed system and
use heuristics drive state exploration towards potentially new
states. The framework does this through system call interposi-
tion — intercepting and modifying system call arguments and
return values to carefully simulate a run-time environment
with virtual clocks, injected node and disk failures, as well as
message delays. The framework also attempts to intelligently
explore new states using a simple heuristic for identifying sim-
ilar, visited states and exponentially increasing the probability
of failure should it seem like the framework is re-visiting
previously checked states. This heuristic was developed in
parallel with the framework, to speed up its development and
allow independent verification of its effectiveness through
simple use-cases like two-phase commit (2PC).

We implement a prototype of this framework on Linux,
and test it on a self-written, bare-bones Raft implementation.
We find numerous bugs in the Raft implementation during
development of the framework, and re-introduce some of these
bugs when evaluating the effectiveness of the framework. No
third-party implementation is tested due to a lack of time.

The primary contributions of this paper are:

1. a semi-transparent testing framework of systems that can
be easily configured to run on a local machine

2. deterministic replay of bug-causing traces through sys-
tem call interposition

3. a heuristic for efficiently exploring the state-space

1



The remainder of the paper is organized as follows. Section
2 briefly discusses other work relating to checking distributed
systems. Section 3 describes the framework developed to al-
low for deterministic runs. Section 4 presents the results of
our independent experiments to identify an efficient heuris-
tic for exploring distributed systems state-spaces. Section 5
presents the results evaluating on our custom Raft implemen-
tation. Section 6 discusses implications of our results and a
conclusion.

2 Related Work

There are many frameworks for checking distributed systems,
with varying levels of transparency and degrees of assump-
tions made regarding the system [7, 12, 13]. The work is most
similar to MoDist [12]. MoDist is able to test unmodified
distributed system code on Windows through similar ideas
of system call interposition, a virtual clock, and failure injec-
tion. We attempt to extend on MoDist by investigating what it
takes to port such ideas over to Linux, and use more simplified
heuristics for efficient exploration of new states, rather than
the complete traces used for DPOR by MoDist [3].

Techniques other than DPOR exist in the model checking
space [5], and we take inspiration from these techniques when
developing our simplified heuristic.

Other frameworks like FlyMC [7], Verdi [11], and Mor-
pheus [13] make stronger assumptions about distributed sys-
tems by taking advantage of static analysis, re-writing systems
in a formal language, and targeting specific languages, respec-
tively. As such, while such frameworks likely provide efficient
and deterministic model checking for the specific programs
they target, they are not general solutions that can be placed
under any distributed systems code.

3 Framework Overview

3.1 Architecture

Figure 1 illustrates the general architecture behind how the
testing framework runs. A configuration file is provided to the
deploying process with the commands required to start node
and client programs. The deploying process spins up some
number of orchestrators, and allocates each orchestrator some
number of local loopback addresses to run the nodes on. The
orchestrator controls all parts of the execution — from the
scheduling of the nodes to when network messages get sent.
Node scheduling can be done by stopping all nodes, and only
resuming a single one at a time. And network messages can be
managed by proxying all connections through the orchestrator,
giving the orchestrator visibility into all messages being sent.
Currently, for simplicity, each orchestrator manages a cluster
of 3 nodes and 3 clients.

Figure 1: General architecture of the framework

3.1.1 System Call Interposition

The framework hinges on system call interposition, which
we do through ptrace. The ptrace system allows a single
process (the orchestrator) to receive signals whenever a pro-
cess it is tracing (i.e. the nodes and clients) hits numerous
events, including both when the tracee enters and returns from
a syscall. This system allows for artificial failure injection, as
when the orchestrator receives a signal that its tracee hit some
traced event, it is able to modify everything from the syscall
arguments and return value to the tracee’s memory.

Not just that, ptrace is what enables us to achieve our goal
of deterministic runs. Tracees will be stopped when they hit a
traced event, which allows the orchestrator to run and process
a single syscall at a time. It also means that the orchestrator
can schedule or kill tracees as needed to allow for different
interleavings and explore different parts of the state space.

Alternatives like eBPF and LD_PRELOAD were consid-
ered, but did not satisfy our requirements. Namely, eBPF does
not allow for modifications of system call arguments and pro-
gram memory, while LD_PRELOAD would likely fail on any
system not using shared libraries like libc.

3.1.2 Virtual Clock

To ensure determinism of the system, and avoid any inadver-
tent timeouts due to the overhead our testing framework may
bring to the system, we introduce a virtual clock by interpos-
ing on time-related syscalls like clock_gettime(). We do
so by first disabling the vDSO (virtual dynamic shared object)
for the given tracee by modifying the tracee’s auxiliary vec-
tor. The vDSO in Linux allows time-related syscalls to run
in user-space for efficiency, and thus would not be detected
by ptrace. Once the vDSO has been disabled, we can inter-
cept time-related syscalls just like the rest of the syscalls, and
supply our own virtual clock-based time instead.

Primarily due to the lack of time, we make a restrictive as-
sumption about how time is used in the tested system. Namely,

2



the system only times out on a polling syscall that fails to
return any results. We would like to go further and handle
implicit timers as mentioned in [12], but ran out of time to
investigate this logic.

3.1.3 Network Interactions

As mentioned before, all network messages for a given cluster
must go through the orchestrator. To do this deterministically,
we take 2 measures.

First, we ensure all network-related requests are guaranteed
to have been sent and received through waiting. When a node
sends or connects to the orchestrator’s proxy, the orchestrator
waits indefinitely until the event is received to ensure that
the send is not delayed and received at a later time. In the
other direction, every time the orchestrator sends a message
to a node, it waits an experimentally-derived length of 50
milliseconds to ensure it gets sent (as we have no way of
ensuring the message gets received in its entirety by a non-
blocking socket, for example).

Second, we track which sockets between nodes and the
orchestrator have a connection. This allows us to determinis-
tically inject failures and not rely on the OS, as Linux could
allow a send to a failed node in one instance or fail it with
ECONNRESET at the next. As far as we know, it is not clear
what logic the OS uses to determine when to choose what.
Instead, using this mapping between sockets, if we decide that
a node should fail, we can ensure that orchestrator is notified
of the node’s failure and force failure on any connection or
send attempts to the failed node.

3.1.4 File-System Failures

We want to check not just network-level errors, but storage-
related errors as well. To do this, we need a way of modelling
the file-system and identifying what exactly we want to test.
As we didn’t have much familiarity with the file-system space,
we focus on a pretty basic idiom on how to atomically update
a file, and model our file-system to be able to check it. Accord-
ing to LWN [8], it is recommended to follow the following
steps to atomically update a file on most file-systems:

1. Create a temporary file in the same file-system
2. Write data to the temporary file
3. fsync() the temporary file
4. Rename the temporary file to the appropriate name
5. fsync() the containing directory

Since one fsync() is required to guarantee the contents are
persisted, and the other to guarantee the metadata persisted,
we attempt to model this separation in our checker.

To do this, we model the file-system as a series of check-
points for individual files, as well as some list of pending
rename operations. Each file checkpoint is determined by
the contents of the file at fsync() time, with some special

Figure 2: Example of what is tracked in our checkpointed
file-system.

logic to handle renames. Each rename operation consists of a
mapping from one checkpoint to another.

As illustrated in figure 2, on an fsync() of an individual
file, our goal is to only update the contents of a file. As such,
if there are any pending rename operations, the contents get
written to the ancestor of the fsync’d file (so the contents of
"file3" would get written to "file2.v3" in figure 2). Otherwise,
a new checkpoint is created (e.g. if fsync was called for
"file1" and "file2"). And on an fsync() of a directory, we
want to update metadata, so any pending rename operations
for the directory are executed in FIFO order.

This allows the checker to identify any deviations from the
idiom since a missing fsync would cause either the contents
or metadata to get out-of-sync.

3.2 Checking

While the framework is able to control individual node and
client failures, as well as file-system failures, it does not have
sufficient knowledge to validate that the distributed system is
behaving as-expected.

Instead, the framework relies on client-supplied asserts that
can be placed in three possible places: (1) within the node
logic itself for node-specific invariants, (2) within clients for
global invariants, and (3) in a validation command that gets
run every 100 events. The validation command should not be
necessary since the clients should be able to detect and assert
any global invariants given sufficient logic, but validation can
be helpful for early detection of errors.

3.3 State Space Exploration

We try out 2 different strategies for exploring the state space
of inter-leavings between nodes and clients. The first is basic
random exploration. Namely, we randomly make all deci-
sions which include when to delay a message, when to kill a
node, when to revive a node, and which node or client to run
next. We use a standard Mersenne twister implementation for
deterministic random number generation.

The second is based off of an exploration heuristic that is
defined and further explained in section 4. The gist is that

3



Event 3-Count Decision

1 n/a d
2 n/a d
3 {(1,2,3): 1} d
1 {(2,3,1): 1} d
2 {(3,1,2): 1} d
3 {(1,2,3): 2} d2

Table 1: Simple example of how heuristic may be used.

we behave similar to the basic random exploration, but also
track the historical behavior of nodes run and the syscalls
they call. Based off of this historical data, we then attempt to
identify and drive the system to new states by increasing the
likelihood of failure of nodes if this bounded history has been
seen before.

If these strategies aren’t sufficient, there is an interface for
clients to add additional logic for further methods to explore
the state space. This interface is also how we implement
deterministic replay, with each strategy recording a replayable
trace of the decisions they make.

4 Exploration Heuristic

We attempt to reduce the exponential state-space of explo-
ration of distributed systems by using an exploration heuristic
to reduce what should be considered as a unique "state". We
developed and evaluated our exploration heuristic in parallel
with the actual development of the testing framework, and
then integrated it in later. As such, we present the preliminary
evaluation of the heuristic separately from the framework.

Our basic assumption is that the state of a system is cyclical,
with similar states often re-appearing throughout a run. For
example, while new leader elections in Raft [9] could be
considered new states of the system, the actual state of the
system is likely repeating states that have been seen before
in previous leader elections. As such, rather than track the
entire history of message sends to uniquely identify the state
of a system as [12] might do, we instead track the number
of occurrences of a sliding window of bounded traces. We
can then use these counts to determine the course of action
to drive a system to new states by exponentially increasing
some "decision" parameter.

The key thing to note is that the heuristic thus requires 3
primary parameters — (1) the length of the sliding window,
(2) identifying events, and (3) the decision being made. Table
1 provides a simplified example of how this might work. It
has a sliding window length of 3, 3 different events, and some
arbitrary decision parameterized towards driving the system
to some new state.

Figure 3: Number of unique 5-event traces using 3 different
strategies

4.1 Evaluation

To evaluate this heuristic without the final testing frame-
work on-hand, we instead use the heuristic in a simple delay-
injection proxy system intended to non-deterministically in-
ject delays into messages being sent across a network.

4.1.1 Evaluation on 2PC

We begin by evaluating this proxy system on a basic key-value
store system built on top of two-phase commit (2PC).

We parameterize the heuristic with (1) a sliding window
length of 5, (2) events determined by the tuple of the type of
message (GET, PUT, VOTE, COMMIT, etc.) and its destina-
tion, and (3) the decision being made is the amount of time
to delay the packet, or dropping if the delay is too high. Note
that the source of the message is omitted from the event in
order to reduce the size of the event space, and thus reduce
both the memory required and the total number of states that
we need to explore.

We compare the effectiveness of 3 different strategies in
identifying new states over time. "Performance testing" runs
the system as fast as possible, without intentionally adding
delay into the network. This is often the only form of testing
done in industry. "Random delay and loss" randomly intro-
duces some static amount of delay to a message and has some
probability of dropping a packet. This is reflective of the ap-
proach used by frameworks like Chaos Monkey [2]. "Visited
delay and packet loss" is our heuristic as described above.

As can be seen in the results in figure 3, both performance
testing and the random strategy are unable to find new traces
and thus new states to explore over time. Instead, they plateau
in the number of unique traces identified as time goes on, in-
dicating that they are likely re-visiting already-visited traces.
On the other hand, the visited heuristic is able to out-perform
both strategies given enough time, and is able to consistently
find new traces with no sign of plateauing even after 3 hours.
We thus see that the visited heuristic seems capable of ex-

4



ploring novel states without requiring the parameter tuning
present in the "Random delay and loss" strategy.

4.1.2 Evaluation on Raft LogCabin

Seeing that the visited heuristic seems promising, we attempt
to use this delay-injection proxy to identify possible bugs in
existing systems — namely an implementation of Raft called
LogCabin written by the authors of the Raft paper [9]. The
delay-based proxy system is much simpler to apply to new
systems compared to the framework we implement due to the
relaxation of the deterministic requirement. As such, we can
use essentially the same exact configuration from the 2PC test
for testing LogCabin.

We similarly use the same 3 strategies for evaluation, and
are able to crash the system in 2 of the 3 strategies. Perfor-
mance testing is unable to find any bugs or issues, which
could be expected as the normal path is likely well-tested by
this point. Both the random and visited strategies are able
to crash the system by causing the nodes to hit their upper
limit on number of open file descriptors. Whether this is a
bug or not is left up to the reader, but it is worth noting that
the visited strategy finds this defect much earlier than the
random strategy. The visited strategy is able to find this bug
after just 10 minutes, while the random strategy required 11
modifications to its delay parameter and a couple of hours 1.

Therefore, the visited heuristic and the strategies it enables
look promising as a way to efficiently explore new states and
possibly find new bugs.

4.2 Applying the heuristic to our framework

Due to the numerous differences between the delay-based sys-
tem used for testing the exploration heuristic and the frame-
work we create, we are unable to use the same parameters for
the heuristic. For one, we want to be able to not just delay
messages, but also fail nodes on specific system calls. Addi-
tionally, we have no information on the message format, and
as such, cannot use message type as part of our events.

As such, our parameterization of the heuristic is as follows:
(1) We maintain a window length of 5 to maintain memory-
and time-efficiency. (2) Since we cannot distinguish messages,
we instead focus on node behavior for our events. We thus
consider the sequence of syscalls that a node performs while
its running as a single "event". We assume there will not be
too many of these since the behavior of nodes is likely quite
rigid. (3) Due to lack of time, we were unable to add much
control over messages. Instead, the decision being made is
solely the probability of whether to fail a node or not.

1Video of finding the bug: https://drive.google.com/file/d/
1So4m5AuBUFD0NLSZjOM9Wk_xeIVc6X-H/view?usp=sharing

Bug Random Heuristic

N/A 0 0
File-System 62 95
Stale Reads 91 80

Early Promotions 12 15

Table 2: Number of failures found for each bug and strategy
used, out of 200 runs per experiments.

5 Results

We implement a prototype using both Python 3 and C++ 2,
and test it only on a self-written Raft implementation 3 due to
lack of time. There were too many syscalls and arguments to
handle to generalize the framework to third-party distributed
systems within the 10 weeks allocated.

5.1 Bugs found during development
While testing and developing the framework, we found a num-
ber of bugs in the Raft implementation. No counts are avail-
able, but the bugs primarily lay in the connection-management
layer. One example is that the implementation made the as-
sumption that only one TCP connection can exist between
different nodes. This falls apart if nodes attempt to connect
to each other at the same time. Such cases are likely to never
appear in local testing, but are exposed due to the scheduling
decisions being made by the testing framework.

The Raft implementation also did not follow the atomic-
update idiom, which was caught. A protocol-level error was
also caught, where a delayed VoteResponse message or Ap-
pendEntriesResponse message could cause errors in leader
election and the log construction.

5.2 Finding injected bugs
In order to evaluate our framework on finding a diversity
of bugs in distributed systems, we run 8 experiments of the
framework using either a random or visited strategy on 4
different implementations: 3 with injected bugs and a control
with no known bugs. The injected bugs are:

• a file-system bug where a file storing hard-state is modi-
fied directly rather than using the atomic-update idiom

• a protocol-level bug that enabled stale reads by allowing
leaders to serve reads before committing an entry

• another protocol-level bug allowing pre-mature leader
promotions by not checking term of a vote response

Each trial consists of 200 experiments run using the random
strategy, and 200 more run using the visited strategy. All 3

2https://github.com/ed-w-lee/cs244b-testing
3https://github.com/ed-w-lee/raft-in-rust/

5

https://drive.google.com/file/d/1So4m5AuBUFD0NLSZjOM9Wk_xeIVc6X-H/view?usp=sharing
https://drive.google.com/file/d/1So4m5AuBUFD0NLSZjOM9Wk_xeIVc6X-H/view?usp=sharing
https://github.com/ed-w-lee/cs244b-testing
https://github.com/ed-w-lee/raft-in-rust/


Figure 4: Number of unique 5-event traces in the control
implementation over 200 experiments run on 40 orchestrators
using our random and visited strategies.

of these bugs can be found regardless of the strategy used, as
can be seen in table 2. From this, we can conclude that both
strategies seem capable of identifying subtle bugs in both the
file-system and protocol logic.

5.3 Effectiveness of Visited heuristic

Finally, we evaluate the effectiveness of our heuristic in find-
ing and exploring new states. We do this by again running 200
experiments on an implementation with no injected defects.
As can be seen in figure 4, contrary to our expectations, the
heuristic-based approach was not able to out-perform the ran-
dom approach in visiting new states. We are not entirely sure
why this is, but we have a few suspicions. It may be that our
heuristic definition was not sufficient in either its definition
or its parameters to drive the system to new states. Or there
may not have been enough experiments to out-perform the
random strategy due to the increased state-space compared
to our previously-tested 2PC example. Despite this, we still
have high hopes in the potential of the heuristic for explor-
ing new states, seeing as the heuristic did seem effective in
non-framework testing.

6 Conclusion

Based on our results, we find that this deterministic framework
seems promising in efficiently identifying defects early-on in
the development of distributed systems. The independently-
developed heuristic also seems promising for allowing the
framework to steadily visit more and more states, though
more investigation will be required to see why the final results
with the framework do not reflect the preliminary results we
received during the independent testing.

Unfortunately, despite the work done so far, we were unable
to generalise the current prototype to work with any and all
third-party implementations due to a lack of time. A few
major hurdles we face in this effort include:

• Support for multi-threading: Most implementations use
threading in some manner. We should be able to handle
this by having ptrace trace clone events and trace new
threads on spawn.

• Generalizing virtual clocks: Limiting assumptions are
made for virtual clocks, and we would like to reach parity
with MoDist [12] in being able to support implicit timers.

• More support for different I/O options: Linux has a wide
array of options for I/O from O_DIRECT for direct access
to files on a file-system, to mmap’ing files into memory
for modification, to asynchronous operations.

Potential future work also includes trying out more complex
exploration policies, and attempting to extract more informa-
tion out of network messages to incorporate into the decisions
made about when to delay or send a message.

References

[1] Aphyr. Jepsen.

[2] Michael Alan Chang and et al. Chaos monkey: Increasing sdn
reliability through systematic network destruction. SIGCOMM
Comput. Commun. Rev., 45(4):371–372, August 2015.

[3] Cormac Flanagan and Patrice Godefroid. Dynamic partial-
order reduction for model checking software. ACM Sigplan
Notices, 40(1):110–121, 2005.

[4] Manish Rai Jain. How i solved jepsen with opencensus dis-
tributed tracing: A personal journey, 2020.

[5] A Kolchin, A Letychevskyy, and S Potiyenko. A static method
for elimination of redundant dependencies in preconditions
of transitions of formal models of transition systems.–2015,
2015.

[6] Leslie Lamport. The part-time parliament. ACM Trans. Com-
put. Syst., 16(2):133–169, May 1998.

[7] Jeffrey F. Lukman and et al. Flymc: Highly scalable testing of
complex interleavings in distributed systems. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New
York, NY, USA, 2019. Association for Computing Machinery.

[8] Jeff Moyer. Ensuring data reaches disk.

[9] Diego Ongaro and John Ousterhout. In search of an under-
standable consensus algorithm. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Confer-
ence, USENIX ATC’14, page 305–320, USA, 2014. USENIX
Association.

[10] Alexandre Verbitski and et al. Amazon aurora: Design consid-
erations for high throughput cloud-native relational databases.
In Proceedings of the 2017 ACM International Conference on
Management of Data, SIGMOD ’17, page 1041–1052, New
York, NY, USA, 2017. Association for Computing Machinery.

[11] James R. Wilcox and et al. Verdi: A framework for implement-
ing and formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’15, page 357–368,
New York, NY, USA, 2015. Association for Computing Ma-
chinery.

6



[12] Junfeng Yang and et al. Modist: Transparent model checking
of unmodified distributed systems. In Proceedings of the 6th
Symposium on Networked Systems Design and Implementation
(NSDI ’09), pages 213–228. USENIX, April 2009.

[13] Xinhao Yuan and Junfeng Yang. Effective concurrency testing

for distributed systems. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’20,
page 1141–1156, New York, NY, USA, 2020. Association for
Computing Machinery.

7


	Introduction
	Related Work
	Framework Overview
	Architecture
	System Call Interposition
	Virtual Clock
	Network Interactions
	File-System Failures

	Checking
	State Space Exploration

	Exploration Heuristic
	Evaluation
	Evaluation on 2PC
	Evaluation on Raft LogCabin

	Applying the heuristic to our framework

	Results
	Bugs found during development
	Finding injected bugs
	Effectiveness of Visited heuristic

	Conclusion

