CRaft DNS: a robust and scalable DNS server on Raft

Changyu Bi, Sean Decker, Kevin Qian, Xinyi Yu
(Ordered alphabetically by last name)

June 1, 2020

0 Abstract

We present CRaft DNS, a replicated DNS name server
architecture with high availability, fault tolerance, and
transparent storage scalability. The key to CRaft’s design
is the use of consistent hashing to shard zone records
among independent clusters of Raft nodes: consistent
hashing servers direct read and write requests to these
storage cluster members, which then process requests and
replicate them among peers through the Raft protocol. We
show that CRaft can be scaled out through the addition of
extra clusters or of new nodes to existing clusters, tolerates
non-Byzantine failures, and is useful for real world DNS
query workloads. We validated our design assumptions
with concrete benchmarks on AWS EC2.

1 Introduction

The Domain Name System (DNS) represents a
fundamental pillar of the internet, translating human
readable domain names with IP addresses, among other
information, that can be used to locate computer services
and devices on the Internet. Because of this vital role, DNS
server outages can cause web pages and email to be
unreachable, rendering these internet services unusable.
Furthermore, slow DNS lookup slows down the entire
experience of using any web service, regardless of the
number of load balancers or web servers.

The most common provider of DNS services are ISPs, but
because DNS is only a peripheral, non-billable part of their
service, ISPs often do not prioritize the availability, and
ISP-based DNS is subject to regular outages and they often
take a long time to recover. There are third party DNS
service providers such as Dyn that try to address some of
the issues [1]. However, their solutions are proprietary, and
such nature means that their mitigation strategies will not
become available in time for other providers to follow
when a new problem is uncovered.

In this paper we present CRaft DNS, a transparently
scalable, highly available, fault-tolerant DNS server
architecture with open-sourced implementation. CRaft
DNS achieves this through the use of sharded storage of
DNS records in Raft clusters with consistent hashing
servers directing traffic to these clusters. These consistent
hashing servers use responses from cluster members as
implicit heartbeat messages in order to verify their
liveness. With these properties, CRaft DNS could serve a
variety of use cases. In particular, it could be valuable in
an IoT network: with increasing numbers of smart devices,
a large number of DNS records will be needed to address
each device instance. loT devices also tend to have a
higher failure rate, meaning a moderate amount of record
updates are necessary during replacement. We expect that
CRaft DNS could tackle these two requirements.

To verify the viability of CRaft DNS, we benchmark both
throughput and fault-tolerance, and demonstrate that CRaft
DNS functions well also on a real world workload. We
show through our throughput benchmark results that our
use of clusters for shards allows our max throughput to
scale close to linearly with the number of nodes in our
clusters, meaning that our system can be scaled out instead
of scaled up. Our fault tolerance benchmark results shows
that our hash server does provide more higher availability
by allowing our service to recover from faulty nodes.
Finally, through our investigation of real world DNS
traffic, we show that our service can also be useful in a real
world setting.

2 Related work

Our system is designed and implemented based on several
algorithms and methods. We use the Raft algorithm to
achieve replication consensus on multiple storage nodes
that form a cluster, and use consistent hashing to shard
resource records among different clusters.

Raft consensus algorithm. Raft [2] is an algorithm
designed to achieve consensus of a replicated state
machine, providing high availability and fault tolerant
properties in distributed systems. It is a protocol easier to
understand than alternatives such as Paxos, and has its key
elements clearly illustrated: leader election, log replication,
membership changes, etc. We adopt the Raft algorithm in
our system to gain consensus between multiple storage
nodes that store DNS records and maintain clusters.

Etcd Raft library. Etcd is an open-sourced, distributed
and reliable key-value store adopted by popular
frameworks like Kubernetes as a backend. It implements
the Raft algorithm as a library with stability and full
feature. In 2016, this Raft library is claimed to be the most
widely used one in production [3]. We utilize this library
as the Raft algorithm implementation for our system.

Consistent hashing. Consistent hashing [4] is a distributed
hashing mechanism that is widely used for distributed
caching. It partitions data according to the hash value of
the key to some places on a ring, and lets each machine
take charge of data on the small portion of the ring. The
algorithm provides scalability for storage and flexibility
for cluster configuration changes. We use it to partition
DNS records among different Raft clusters.

3 Design

Our design is mainly around a single conceptual DNS
nameserver. It behaves just like a normal DNS nameserver
that can be installed into the DNS resolution flow, which
potentially maintains its own zone, while also allowing
records pointing to other subzones in the hierarchy. It
supports both iterative and recursive resolution.

The conceptual name server consists of 2 major types of
components: varying number of storage clusters, each
storing a partition of all local records, and a set of
consistent hashing servers at which external queries and
updates are served.

Each storage cluster takes the responsibility to store a
partition of resource records. We run Raft protocol inside
of each cluster, ensuring records are reliably replicated and
consistent among cluster members, while tolerating
member failures. Except for during resharding and
migration, there are no communications between the
clusters, and the presence of each is unknown to peer
clusters.

The consistent hashing servers receive and respond to
incoming DNS queries and update requests. Each of them
are present as NS and glue records in the zone above.
These servers are aware of the Raft clusters, and use
consistent hashing to assign key ranges to each of them,
thus allowing scalability on a large amount of records.
Depending on whether there are frequent changes to the
storage clusters configuration, these hashing servers can
operate independently, or forming a cluster themselves.
Since they maintain very little state (only cluster
information), a crashed consistent hashing server can
recover almost instantly.

Each member node inside of a storage cluster maintains 3
separate interfaces: the Raft protocol interface, DNS UDP
interface, and a DNS wupdate interface (currently
implemented as HTTP requests). The Raft protocol
interface handles messages about term leader elections and
log replication. The DNS UDP interface sits on the

nst | '.‘ DNS Query .1 y N
,"/ | Write Reguest > [(n\ /" rah \
‘v \ _node / \ Node J
N f Storage Cluser 1
INS Iy .1 A\ ’
I ‘ DNS Query : w2 .)
\ \
Chlornt] ,
/ / \
‘(; \ \ / r n)
Clent |) \ ! [rah)
d |\ "™ ‘.' ; \ nooe /
Wrte Roquest | N
\ f \
} INS Quen \
\ Consistent Hashing Servors |/ ONS Query ; . /" \
g Wrte Reguest /() [) '
A | \ node / \ node / \
\ \
! Storage Cluser 2
Figure 1: High level overview of the design. A set of public-facing consistent hashing servers recetve external requests,

and forwards them to the corresponding partition of storage cluster, where Rafl is running among the members

conventional port 53 for DNS nameservers, and is
expected to receive DNS query messages as defined by
RFC1035 [5]. These messages are expected to be read only
and thus can be handled locally by the recipient node. In
the case of recursive queries, we might optionally maintain
a cache, for which we could either choose to have this
cache private or also replicated, the latter requiring us to
potentially issue writes inside of the cluster. The DNS
update interface receives requests for adding and deleting
records. Using an HTTP REST API, the current
implementation supports adding a record in the form of
submitting a text representation of the resource record, and
deleting a list of records for a name of a certain type.

Instead of explicitly maintaining a master zone file, the
DNS records are usually stored in-memory in member
nodes for efficient lookup (the records can be easily
exported as zone files). In the case where we want to limit
total memory usage, an optional simple least-recently used
(LRU) paging policy is implemented, which allows
records to be organized as pages and can be paged out to
the filesystem when number of pages present in memory
exceeds a user defined limit (some metadata, such as last
applied commit log index, are tracked per page to allow
reapplying commits idempotently during crash recovery).
Write ahead logs are maintained as dictated by the Raft
protocol, and periodic snapshots are taken to allow faster
recovery on node failure. On read-only queries, the node
can directly respond using its local records if available; on
record addition and deletion requests, the requests are
serialized and forwarded to the leader and the commit will
be propagated to all peers; actual update to local records is
done only after the request is committed.

Consistent hashing servers also maintain a similar DNS
UDP interface and an update interface, but do not save any
resource records themselves. Using the cluster information
and consistent hashing, these servers decide which cluster
should they forward the request to and obtain the response
from. It might seem redundant for storage clusters to
implement normal DNS query support even when they are
not facing the public. This is however intentional: it allows
the storage clusters themselves to function as a set of
fully-working nameservers, such that we can completely
drop these consistent hashing servers when a single cluster
is able to satisfy storage requirements.

On receiving an external DNS UDP message from the
interface, the consistent hashing server computes the
partitions to which the request should be routed to, based
on the domain name of the question. This might involve
more than one cluster in case of multiple DNS questions

with different domain names (note that such queries are
rare in practice). It then decides on a list of preferred
member nodes in each relevant cluster, and issues batched
requests to their corresponding interface in parallel. The
preferred lists are ordered based on the last known
timestamp where the node is considered alive, with
randomness introduced to avoid hot nodes. The first nodes
of these lists are forwarded the queries, and only on
response timeout are subsequent nodes tried. If the queried
cluster member node does not respond in time, the server
considers the node temporarily unavailable, and updates its
alive timestamp to some moment in the future, effectively
making the node no longer preferred until the timestamp is
passed, assuming that it will take some time for the node to
recover. If some of the designated partitions replies to a
DNS question without the expected record, it is likely that
the record does not exist, while it is also possible that a
wildcard record covering the name is present instead. In
that case, the unanswered question will be broadcasted to
all clusters. While this is obviously not the most efficient
strategy, we expect queries that do not yield a result (or
yield a wildcard result) to be rare compared to our major
use cases (for some specific use case, we can also choose
to disallow wildcard records instead). After receiving the
replies from clusters, the consistent hashing server
combines the answers and replies to the external client, in
a way such that the presence of storage clusters is
completely transparent.

4 Implementation

We use Go to implement CRaft DNS. We prefer Go over
scripting languages or platforms such as Node.js, where
cooperative multitasking precludes CPU parallelism [6],
and Python, where Global Interpreter Lock prevents true
parallelism. We also prefer it to C/C++ due to its
simplicity, built-in memory management to allow faster
development, and effective light-weighted green thread
implementation (goroutines). We also considered Rust due
to its elegant design and strong safety guarantees, but
eventually did not do so since it is a harder language for
everyone on the team to pick up quickly.

We mainly use 3 open source libraries: miekg/dns for
DNS message serialization and deserialization (we
implemented basic DNS iterative and recursive resolution
ourselves since it is not provided by the library),
buraksezer/consistent for basic consistent
hashing, and Etcd for Raft protocol. As discussed above,
Eted is a well-written distributed and reliable key-value
store that is adopted in popular systems such as
Kubernetes. However, instead of directly using Etcd, we

choose to rip out only its Raft protocol implementation,
since we realized that while DNS records are feasible to
store as pure key-value pairs by proper serialization, such
implementation would introduce extra performance cost
due to constant parsing. Also, by directly using the Raft
APIs, we have a better control of its snapshotting utilities
and write-ahead log format, therefore allowing us to tweak
their configuration parameters when deemed necessary.

Two independent binaries are generated: dns server
for storage cluster nodes, and hash server for
consistent hashing servers. As discussed before, their
independence allows partial benefit from our design
without using all components. dns server can also
operate under the optional paged mode that takes
advantage of disk storage through the —--page flag.

5 Benchmark

To validate our design decisions and show the

practical usability of our DNS service, we explain in this
section the benchmarks conducted on our service that
measure throughput, fault-tolerance, and the latency
against real-world DNS traffic.

5.1 Scalability of a Raft cluster

We first validate our design choice of using a Raft cluster
to hold DNS data and serve DNS queries to improve read
throughput. We measure the maximum throughput of a
single Raft cluster with a varying number of nodes. Each
Raft node is an instance of an Amazon EC2 t2.medium
node with 2 vCPU and 4GB of RAM. We use 3 t2.2xlarge
nodes (8vCPU) as our client nodes to saturate the servers
with DNS queries. We first populate the cluster with 1
million DNS records, which takes more than half of the
memory (each node is using about 2.4GB of memory). The
network delay between any two nodes is submillisecond.
The network bandwidth of each node is 1Gb/second. In
this experiment, each client issues as many requests
(uniformly at random) as possible to obtain the max
throughput. The experiment result is in Figure 2.

— Actual
3000007 — perfect

250000

200000

150000

100000

Max throughput (query/second)

50000

1 2 3 4 5 6 7 8 g
Number of nodes in the cluster

Figure 2. Results of the scalability experiment. The perfect line
represents perfect scalability with slope 1. Our client nodes
became network bottlenecked in the case of the 9-node cluster.

At the baseline with a one-node cluster, the max
throughput is about 35 thousands queries/second. The
two-node cluster and the three-node cluster give about
1.8x and 2.7x baseline throughput respectively, which are
close to the perfect scalability (the red line in Figure 2).
With a nine-node cluster, our client nodes became
network-bottlenecked and the throughput is about 6.5x the
baseline. This result matches our expectation that the max
read throughput should increase almost linearly as we add
nodes to the Raft cluster, since in our design read
operations do not go through the Raft protocol and each
node is able to answer queries by checking its own data.

5.2 Throughput with hash servers

We then experiment and measure how consistent hashing
servers affect the performance. We use the result of a
three-node cluster from Section 5.1 as our baseline and
consider the following settings: one hash server + one
three-node cluster, three hash servers + one three-node
cluster, and three hash servers + two three-node clusters.
The machine types for hash servers and cluster nodes are
all t2.medium. Note that ideally there should be a
consensus protocol between hash servers to ensure a
consistent view of configurations. We did not implement
this in our benchmark due to time concern, but the effect
on throughput should be minimal since the configurations
are fixed during each experiment. We use the same three
client nodes as in Section 5.1 to measure the max read
throughput in each setting. The results are in Table 1.

3-node 1 hs + one 3 hs + one 3 hs + two

cluster 3-node cluster 3-node cluster 3-node cluster
Max TP 96125 17731 46504 53344
(query/s) 5.4:1 (2:1) (1.8:1)

Table 1. Max read throughput of different settings.The ratios are
compared with baseline (the column with 3-node cluster). The
bottleneck is the CPU at hash servers.

If we compare the results in the column of “3-node
cluster” and the column of “3 hash servers + one 3-node
cluster”, we see a 2x downgrade in performance compared
to the baseline. So introducing hash servers to direct DNS
queries reduces about 50% of the max throughput. This
can be attributed to the extra processing logic at the hash
servers, e.g., computing hash functions and parsing query
questions and results. In addition, since hash servers serve
as a “proxy” to direct DNS queries and answers, the
latency is almost doubled in our setting where all nodes are
in the same AWS availability zone. To retain the same
throughput with this increased latency, the hash servers

need to handle a larger number of client threads which
may also introduce some CPU overhead.

Note that this latency overhead should be minimal in
practical settings where the latency is dominated by the
message delay between clients and server nodes.

This throughput reduction matches our prediction, and we
expect that this overhead can be reduced by optimizing the
implementation of the hash servers (e.g., use more efficient
data structures), caching DNS query results, and properly
batching DNS queries. It is worth noting that by
introducing hash servers, we can have multiple clusters of
Raft nodes and this enables our service to store more
records in memory for fast service. In fact, in the setting of
the last column of Table 1, we stored 2 million resource
records while this is not possible to be stored in memory in
a single cluster for all other settings in Table 1. We expect
a similar result under the paged version of storage cluster
nodes.

5.3 Fault tolerance and availability

This part tests the fault tolerance of our system. For write
operations, we rely on Raft features: it can tolerate failure
even when a minority of nodes in a cluster fail, while for
read requests, we apply local reads so that as long as the
queried node is alive, read operation can succeed. We
further add a hash server layer which enables hiding more
failures, mainly due to the hash server’s strategy of
node-querying-priority inside one Raft cluster that it tends
to query an alive node.

We decide to do all experiments on pure read requests, for
this is the most prevalent use case of DNS service. In the
first experiment, there is no hash server running in the
system. Multiple client threads on a single machine
directly send DNS read requests to one random server in
the Raft cluster, and that storage server replies back to the
client. In the second experiment, one hash server is set up.
There is only one Raft cluster, therefore the hash server
just does the forwarding of requests and replies. The client
threads send all DNS read requests to the hash server, and
receive responses from it. We use the following
configurations for this part: one client machine of t2.micro
type, one Raft cluster composed of 3 storage machines of
t2.micro type and one hash server of t2.micro type (if
used).

In both experiments, we do a time - throughput
measurement, as shown in figure 3. In the beginning, every
server is alive. At 30 second, we kill a server in the Raft
cluster. At 60 second, we kill another server in the Raft

cluster. At 90 second, the first server is restarted and
finally, at 120 second the second server is restarted.

Fault Tolerance

10000

8000 -

6000

4000 A

Throughput (response / sec)

2000 -

w/ hash server
w/o hash server

0 20 0 60 80 100 120 140
Time (sec)

Figure 3. Results of the fault tolerance and availability test.

The results appear as expected. The red line (first
experiment) represents the local read properties of the
basic Raft cluster: when killing one of three servers, the
systems can still handle read requests and the throughput
drops to 2/3. When two of three servers are killed, it
cannot handle write requests (not shown here), we still
allow read requests to happen locally, and the throughput
drops to 1/3. After restarting the two servers, the
throughput goes back to the original value.

The green line is for the experiment with a hash server. It
starts with the same throughput as the red line, but
generally it has higher throughput than the basic Raft
cluster line when several servers are dead. That is due to
the strategy adopted by the hash server: after failing
querying some nodes inside the hashed Raft cluster, it will
prioritize other nodes in that cluster during a period of
timeout. Therefore, one or two of three servers’ death
doesn’t have too much impact on the decrease of
throughput: the hash server will try to query the alive
server. The dive of the figure is related to the timeout
mechanism of the hash server when it occasionally retries
a previously dead node to see if it becomes reachable
again. While the disruption is negligible in practice, it
would be an interesting experiment to eliminate recurring
dives by sending separate explicit heartbeat messages
before retry if reviving a node takes a long time.

The experiments show that our system possesses high fault

tolerance properties, and even better availability due to the
existence of hash servers.

5.4 Experiment with Real World Traffic

In order to verify the practicality of CRaft DNS, we also
need to verify that it can handle real world queries
generated in a probable client network. We must ensure
that CRaft DNS can respond to DNS queries generated in a
real world setting as quickly as other high availability
DNS nameservers. This experiment will help to validate
our design by ensuring that real world DNS traffic doesn’t
have a certain pattern that is hard for CRaft DNS to deal
with. Furthermore, there may be a difference in the
interaction between CRaft DNS and a home network
device versus CRaft DNS and a server running in a
datacenter.

mean time standard dev
Google 6.94 5.82
Cloudflare 4.80 1.54
CRaft DNS 6.35 3.38

Table 2. Table shows the mean response time for 2,433 DNS
queries. The experiment was run 18 times.

To run this experiment, we first needed to gather a large
sample of DNS traffic. This was done using Wireshark.
Through wireshark, we were able to gather a sample of 6
hours of DNS queries from various devices connected to a
home wireless LAN. 2 computers and 3 smartphones were
connected to Wifi at some point during this sampling. This
monitoring allows us to collect 2,433 DNS queries.

After gathering these queries, we then populated a
nameserver running CRaft DNS with the responses to this
real world DNS traffic. This server was running on 2
clusters, each with 3 nodes each, with each node being an
EC2 t2.micro instance.

To test the performance of CRaft DNS on this real world
traffic, we then selected Google’s 8.8.8.8 nameserver and
Cloudflare’s 1.1.1.1 nameserver to compare against. From
a home network, all 2,433 were sent in 35 separate threads
to each nameserver and the time it took for each to respond
to all requests was recorded. This experiment was iterated
18 times and the results are in [table 2].

We find that CRaft DNS has comparable response time to
these two other larger DNS nameservers, though the
standard deviation of response time is quite high. We
hypothesize that the more important factor driving
response time are artifacts of the network as opposed to the
nameserver itself. This result still verifies that our DNS
name server is useful in the wild and that even on real

world DNS traffic it performs comparably well as a real
world DNS nameserver.

6 Future Work

Since our team members have few prior experience with
distributed systems, we spent a long time understanding
the protocols, learning Go, seeking libraries, and figuring
out how to use Docker and AWS for local and remote
deployment and testing. Therefore there are some points
we realized during development yet unable to evaluate,
given the time limit. We are listing some of these below as
future work ideas if we were given more time to explore.

We realized early on the necessity of storage partitioning
to avoid full replication of the record database. We went to
use consistent hashing with virtual nodes to achieve such.
However, as pointed out by systems such as Coral [7] and
Dynamo [8], there are other alternatives to build a
distributed hash table such as Kademlia, CARP, or the
simple equal sized partition tables. More careful
experiments with different strategies might help to reveal
interesting policies the public-facing servers can apply.

Consistent hashing servers in our current implementation
treats each incoming request as independent and forwards
queries independently to storage clusters. However, it is
also possible to batch questions from different outside
queries into a single DNS message for forwarding, thus
reducing total message exchange count and byte amount
(merging multiple UDP packets/DNS messages into one
implies only 1 header is needed) between components. We
were hesitant to implement such a strategy, since batching
means we need to determine the length of an appropriate
time frame during which we will wait for more packets to
come in before forwarding to internal clusters. A fixed
time frame might either be too long to have terrible
latency, or too short to even see a second packet coming
in, and synchronization costs might be too high between
originally independent tasks executed. However it is still
an interesting idea to evaluate with more concrete
experiments.

We implemented a simple migration strategy for the
in-memory version of the storage -cluster nodes:
temporarily withholding write requests in consistent
hashing servers, copying migrated records from existing
clusters to the new cluster, reenabling write requests and
triggering migrated records cleanups inside each cluster
using a dedicated garbage collecting thread. This allows
clusters to continue serving with zero read downtime while
migrating in the background. However, it might be

possible to find another strategy that can allow write
requests during migration. We also did not have time to
implement the strategy for the paged version of storage
cluster nodes. However, one simple design involves
similar steps as above, with some tweaks: the hashing
servers enter read-only mode, temporarily stop forwarding
write requests to clusters (to avoid the complexity of
concurrent updates), and signal the existing storage
clusters to flush out all pages. The new cluster can now
retrieve these pages (possibly using some network file
system) and move entries that hashes to the key range
controlled by itself, and leave markers about which entries
are migrated, and can thus be dropped by their old owners
when paged in again. When complete, the consistent
hashing servers are notified and can finally switch to use
the new membership and re-enable write request
forwarding. This ensures that the existing records continue
to be available for DNS queries, and keep re-sharding
completely transparent to the user.

Raft is introduced to ensure strong global consistency
guarantees for updates. However, as revealed by Dynamo
and COPS, there are weaker models that can still fit the
use case of DNS. For example, causal+ [9] might also be
effective: since DNS has, for example, CNAME types for
name aliasing, it has the risk of unsatisfied dependency if
updates are reordered by network, therefore causal+ can
tackle these potential issues, and we won’t need to pay the
extra cost for, e.g., ensuring the temporal order among
updates on independent domain name keys.

7 Conclusion

As an extensively used service that affects almost all
internet services, DNS should be highly available and
performant. DNS services should also be scalable to meet
the need of the growing number of hosting requests, while
still being fault-tolerant. The report by Dyn pointed out
that the common DNS service providers, ISPs, failed to
meet such requirements [1].

In this paper, we introduced CRaft DNS, a DNS name
server design that provides high availability, fault-tolerant
and scalability. CRaft uses the Raft protocol in each DNS
server cluster to provide fault-tolerance and adopts
consistent hashing servers on top of DNS server clusters to
provide transparent storage scalability. This two-level
architecture also ensures the high availability of our DNS
service. We showed that CRaft DNS can scale horizontally
through the addition of nodes and clusters through
benchmarks performed on a test name server running on
AWS while still maintaining fault tolerance. Through these

tests we showed that CRaft DNS would be a viable
architecture for a real world DNS name server. In
particular, a CRaft DNS name server would be valuable to
systems which require more writes because of common
device failures and high scalability such as in IoT use
cases.

8 References

[1] “The Case Against Free ISP DNS,”
https://dyn.com/wp-content/uploads/2013/06/Case A gainst
Free[SPDNS.pdf (June 2013).

[2] Diego Ongaro, John Ousterhout, “In Search of an
Understandable Consensus Algorithm,” USENIX Annual
Technical Conference (2014).

[3] Eted authors, README of Eted Raft library,
https://github.com/etcd-io/etcd/tree/master/raft (Retrieved
June 1, 2020)

[4] David Karger et al., “Consistent Hashing and Random
Trees: Distributed Caching Protocols for Relieving Hot
Spots on the World Wide Web,” Proceedings of the
twenty-ninth annual ACM symposium on Theory of
computing (May 1997).

[5] P. Mockapetris, “Domain Names - Implementation and
Specification,” Network Working Group Request for
Comments 1035 https://tools.ietf.org/html/rfc1035
(November 1987).

[6] Atul Adya et al., “Cooperative Task Management
without Manual Stack Management,” Proceedings of the
2002 Usenix Annual Technical Conference (June 2002).

[71 Michael J. Freedman, Eric Freudenthal, David
Mazieres, “Democratizing content publication with Coral,”
Proceedings of the Ist conference on Symposium on

Networked Systems Design and Implementation (March
2004).

[8] Giuseppe DeCandia et al., “Dynamo: Amazon’s Highly
Available Key-value Store,” ACM SIGOPS Operating
Systems Review (October 2007).

[9] Wyatt Lloyd, Michael J. Freedman, Michael
Kaminsky, and David G. Andersen, “Don’t Settle for
Eventual: Scalable Causal Consistency for Wide-Area
Storage with COPS,” Proceedings of the 23rd ACM
Symposium on Operating Systems Principles (October
2011).

https://dyn.com/wp-content/uploads/2013/06/CaseAgainstFreeISPDNS.pdf
https://dyn.com/wp-content/uploads/2013/06/CaseAgainstFreeISPDNS.pdf
https://github.com/etcd-io/etcd/tree/master/raft
https://tools.ietf.org/html/rfc1035

