
Chunky: a distributed GFS-based file store

Matthew Lee
Stanford University

Abstract
We present Chunky, a distributed file store based on the design
of the Google File System (GFS) [2]. Like GFS, Chunky
replicates file chunks across multiple chunkservers for fault-
tolerance and employs a single central master to coordinate
access to files. Unlike GFS, Chunky implements write-once
semantics for files, which simplifies the design considerably
(obviating the need for a lease mechanism) while still enabling
a practical, interesting system that demonstrates robustness
in the face of multiple chunkserver failures.

1 Introduction

Designers of distributed file systems sometimes find it conve-
nient to deviate from the traditional POSIX file API. Chunky
is no exception. Motivated by the need to store more data
than can fit on a single machine across multiple servers in a
way that is resilient to the failure of some servers, Chunky
exposes a simple file API and implements a GFS-like chunk
replication scheme.

2 Chunky: Design and API

2.1 Write-Once: Not entirely useless

Write-once file semantics may seem too restrictive for a useful
system, but on the contrary, there are in fact important classes
of workloads that are essentially write-once in nature, such
as content publishing. Video content alone, which by itself
constitutes more than 60 percent of Internet traffic [1], is
a case where video files are uploaded once - written to a
distributed sytem of video content hosts - and thereafter only
read by clients.

More generally, write-once semantics are not actually an
impediment to useful computation: the entire paradigm of
functional programming manages to make do with immutable
"variables".

2.2 Chunky API
Chunky exposes a simple API for file manipulation.

open a function which returns a ChunkyFile that is a handle
to data stored at path. At this point no space has been
allocated for the data.

reserve a function that declares the size of a ChunkyFile in
bytes, callable once per file.

write a function which writes data to a ChunkyFile segment
given by range, callable once per file.

read a function which reads a range of data from a Chunky-
File and populates the data field provided by the caller.

2.3 Important system interactions
Heartbeats The chunkservers periodically send heartbeats

to the master, enabling the master to detect when new
chunkservers come online and when chunkservers fail.
As in GFS, chunkservers are the source of truth for
the chunk handles that they store; the master requests
chunkservers that have just come online to send their list
of chunk handles.

Chunk Handle Lookup The master maintains a mapping
from (file name, intra-file chunk index) tuples to chunk
handles. This mapping is populated at the time of file
allocation. The client library never caches this informa-
tion; every read by a client is begun by a query to the
master for the chunk handle that stores the data of a file.

Chunk Server Lookup The master also maintains the map-
ping from chunk handle to a list of chunkservers that
stores that chunk. This mapping is populated when
chunkservers report their chunk handle lists. The client
library queries the master for the chunk servers that own
a particular chunk in order to read or write to the correct
chunkservers.

1



Chunk Allocation When the client library reserves space
for a file, the master computes the number of chunks
needed and chooses k random chunkservers per chunk.
The allocation of chunk data occurs on the chunkserver
side by creating a file on the underlying Linux filesystem
to store the chunk data.

Data Movement After clients have queried the master for
the list of chunkservers that own a particular chunk, data
movement between the client and chunkservers occurs
without the mediation of the master. Like in GFS, this
design ensures that the master is never on the datapath;
the master only sends control messages, which helps
prevent the master from bottlenecking the entire system.

2.4 Implementation trivia
The system is implemented in C++, using gRPC for commu-
nication between components. Chunkservers store file data on
the underlying filesystem in order to take advantage of sparse
file support (which avoids consuming physical space for allo-
cated but unwritten chunks). File metadata on chunkservers
is stored on a LevelDB database.

3 Evaluation

We instantiated a system with 5 chunkservers and a replication
factor of 3. To observe the effect of a chunkserver failure on
the system, we triggered a crash on chunkserver 3 at about
the halfway point. Later, we revived chunkserver 3.

The figure on the following page shows the total throughput
of the system in requests served per second. The failure of the

chunkserver causes the total throughput to dip momentarily as
the client is blocked while waiting for a request to the failed
chunkserver to time out. After the master detects the failure
of the chunkserver, the master deletes the failed chunkserver
from its chunk handle to chunkserver mapping and therefore
the client no longer attempts to send read requests to the failed
chunkserver. As a result the blocking behaviour is not seen
after the failure. The request load is redistributed to the other
chunkservers and the total system throughput resumes. Later,
when the failed chunkserver comes back online, the system
returns to its former state, with all chunkservers sharing the
load.

Availability

The source and driver scripts are available at https://
github.com/mattlkf/chunky.

References

[1] The Global Internet Phenomena Report. Sand-
vine, 2019. https://www.sandvine.com/
global-internet-phenomena-report-2019.

[2] Gobioff H. Ghemawat S. and Leung S.-T. The google file
system. In ACM Symposium on Operating Systems Prin-
ciples, 2003. https://static.googleusercontent.
com/media/research.google.com/en//archive/
gfs-sosp2003.pdf.

2



Figure 1: Request throughput in presence of node failure and recovery

3


