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Abstract 

This project is an implementation of clustering 

for H2[1], an open source Java SQL database. The 

default storage subsystem in H2 is a multi-

versioned persistent and log structured key-

value store. The project achieves distributed 

transactions for simple table operations using 2 

phase commit protocol (2PC). Replication is 

achieved by intercepting table level operations 

and sending messages synchronously to replicas 

using gRPC as part of the 2PC. And, concurrency 

is managed using timestamp ordering of 

operations. The timestamp used for ordering is a 

cluster level global timestamp assigned by a 

designated node from the cluster acting as a 

timestamp server. 

 

1 Introduction 

1.1 H2 

H2[1] is a light-weight SQL database with 

support for transactions. H2 supports both 

embedded mode (in-memory) and server mode 

(persisted in a file). In server mode, data is 

persisted in a single file for each database. H2 

provides support to encrypt the files. 

H2 is written in Java and is extremely popular 

among Java based frameworks and projects. For 

example, H2 is widely used as a test dependency 

in spring-boot projects for testing any SQL 

database related functionalities. H2 works very 

well with popular Object Relational Mapping 

(ORM) frameworks such as Hibernate. 

Maven public repository suggests that H2 is used 

in 5,789 artifacts. It is fair to say that H2 is the 

de-facto in-memory SQL database used for 

testing SQL database related functionalities. 

H2 comes with a simple clustering feature 

(hereinafter, referred to as “native” cluster 

mode or implementation) [3]. The native cluster 

mode is limited to two nodes and is more akin to 

active-active high availability mode. In the native 

cluster mode, replication is achieved at the SQL 

level. SQL commands are executed 

independently at both nodes to achieve 

replication. This approach to clustering comes 

with certain limitations. One such limitation is 

related to inconsistent behavior of certain SQL 

commands/functions supported in H2 such as 

UUID(), SECURE_RAND(), SESSION_ID(). Because 

replication is based on SQL commands, same 

command may result in different values on the 

two nodes. This limitation means that users will 

have to forego certain features to run H2 in 

native cluster mode. 

I believe the authors took the simple approach 

for two reasons. One, the primary use-case for 

H2 is as an in-memory database for unit tests. 

And, two, the project is an open source project 

with only four primary developers. Therefore, 

the need to support full clustering is probably 

not the highest of priorities for the authors. 

However, there are many use cases that can 

benefit from using a clustered H2 database. One 

such example use case is testing behavior of 

https://github.com/sfbayhacker/h2database/tree/cs244b-master


multiple instances of a micro-service running on 

docker containers without having to install a 

physical database server. In a typical micro-

services application stack, the micro-services are 

stateless, and they use a common database 

server hosted locally or in the cloud. And, making 

a database server available is not always 

practical, especially for running tests in the CI/CD 

pipeline or even in local developer 

environments. 

1.2 Motivation and target use-case 

The idea behind this project is to first and 

foremost learn some concepts related to 

distributed systems. And, in the process, 

hopefully, fill the gap in the native cluster 

implementation of H2 to support additional use 

cases as discussed.  

Given the tight bounds on the project timelines, 

the project goals were limited to 

implementation of clustering for databases with 

simple key-value pair based table structures. 

Nothing in the implementation assumes key-

value pair data structures. However, there is an 

implicit assumption that there is a key identifying 

each row. This can be either the key as defined 

by a primary key definition, or a column 

guaranteed to have unique value. The current 

implementation assumes that index level key 

exists for each row. The assumption is fair and 

works well with H2, as H2 assigns a primary key 

(based on a serial number) even when there is 

no primary key specific for a table. 

The implementation addresses the three aspects 

of replication, atomic commitment, and 

concurrency control. I chose to use 2PC as a 

consensus mechanism for replication and as a 

distributed commit protocol. This should serve 

the purpose for most testing use-cases while 

providing reasonable performance. I chose to 

use timestamp ordering for concurrency control. 

In section 2, I discuss the overall architecture of 

how distributed database management is 

achieved. In section 3, I discuss the 

implementation details of replication and atomic 

commitment using 2PC. In section 4, I discuss the 

implementation details of concurrency control 

using timestamp ordering. 

The primary target use-case for this 

implementation of clustering feature is test 

automation for SQL database related 

functionalities. While performance is not a major 

focus, reasonable performance is expected 

when using H2 with clustering enabled. In 

section 4, I discuss the impact of distributing 

transactions on transaction throughput by 

providing performance data, benchmarked 

against the original implementation of H2. 

 

2 Architecture and design 

 

FIG. 1: Distributed Database Architecture 

 

FIG. 1 depicts the distributed database 

architecture. The distributed database is a 

collection of homogeneous nodes. Each node is 

a H2 database server with MVStore[2] (the 

multi-version store in H2) as the default store for 

managing data. Each node can act either as a 

coordinator or a follower for any given 

transaction. 

Users always operate in the context of a session. 

And there can be only one transaction within a 

session at any single point in time. And, users 

may start multiple sessions in parallel at any 

single node. 



One of the primary goals of this project is to 

support transactions as part of the clustering 

implementation. While MVStore provides 

support for transactions in a single node, 

clustering implementation must take care of 

atomic commitment across the nodes to support 

transactions. To achieve atomic commitment 

across the nodes, two-phase commit or 2PC is 

used as the consensus mechanism for the nodes 

to agree on operations being performed on 

data[5]. 

In the context of a given transaction, the two-

phase commit coordinator interacts with data 

managers at all nodes including the one at the 

coordinator to perform operations. The 

operations are performed at all nodes within the 

context of the session to which the transaction 

belongs, where the session is identified by the 

session id. Followers create a session and cache 

the local session object for future re-use with the 

coordinator session id as the key. 

Since sessions can be started at the coordinator 

(which can potentially be different for different 

transactions) and each coordinator assigns 

session ids independently, it is possible that 

session ids can collide. This collision in session ids 

can create inconsistencies in cache of session 

objects at the followers. To overcome this 

problem, the followers identify sessions based 

on a combination of session id (as defined by H2) 

and a unique host id assigned to each node in the 

cluster. Since host id is always unique, the 

combination of session id and host id is 

guaranteed to be unique.  

 

 

FIG. 2: Component interactions to distribute 

table level operations 

 

FIG. 2 is a block diagram illustrating the flow of 

control between the various components.  

 

FIG. 2 illustrates the various components 

involved in this project. The components 

highlighted in green are new components added 

to the existing code base of H2. The distributed 

database illustrated in FIG. 1 is achieved by way 

of intercepting row level operations on MVTable 

(MVTable.java in the source code) and 

MVPrimaryIndex (MVPrimaryIndex.java in the 

source code) classes (not shown) that operate on 

MVStore (MVStore.java in the source code). 

2PC Coordinator (TwoPCCoordinator.java in the 

source code) implements the coordinator logic 

and is responsible for making calls to followers 

and receiving messages from followers. 2PC 

Coordinator makes use for gRPC channel to 

create gRPC clients to send protocol buffer 

messages to followers. 

Command Processor (CommandProcessor.java 

in the source code) implements the follower 

logic to receive messages via gRPC channel and 

perform necessary operations via the Data 

Manager. Command Processor with the help of 

a 2PC Follower (TwoPCFollower.java in the 

source code) also takes care of sending messages 

to the coordinator of a transaction. This is 

needed when a follower recovers after a crash 

and finds prepare log records for transaction 

that are yet to be committed. 

Data Manager (DataManager.java in source 

code) implements the data structures for 

maintaining prewrites, and with the help of a log 

manager (LogMananger.java in source code) 

performs necessary operations to persist 

commit log information and prewrites state to 



disk. In addition, Data Manager is responsible for 

performing necessary concurrency checks for 

prewrites based on timestamp assigned to 

transactions. 

Data Manager is a new layer added on top of 

MVStore to facilitate data management in the 

two-phase commit process and concurrency 

control using timestamp ordering.  

 

3 Replication and atomic 

commitment using 2PC 

3.1 Replication 

Replication is achieved by synchronously 

distributing operations within a transaction. If 

the cluster mode is enabled, write operations 

from the user are intercepted at the node where 

user is providing requests and corresponding 

calls are routed to 2PC Coordinator. The 2PC 

Coordinator is responsible for delegating the 

calls to Data Managers (local and remote) to 

perform necessary operations. 

Data Managers (local and remote) perform 

operations in the order received to achieve 

replication with consistency. 

The following commands were implemented to 

achieve replication.  

addRow: 

In cluster mode, add row operation from user is 

intercepted to invoke 2PC Coordinator, which 

subsequently sends the addRow command along 

with session id, host id, transaction id (global 

timestamp), and the row data. The 2PC 

Coordinator sends the addRow command to the 

local DataManager. It also sends a gRPC request 

to all the followers to perform a rowOp with the 

addRow request. The Command Processor at the 

followers processes the rowOp and sends it to 

the its DataManager. The local DataManager 

replicates the addRow request. 

updateRow: 

In cluster mode, update row operation from user 

is intercepted to invoke 2PC Coordinator, which 

subsequently sends the updateRow command 

along with session id, host id, transaction id 

(global timestamp), the old row data, and the 

new row data. This is replicated across the 

followers in a manner similar to the addRow 

request. 

deleteRow: 

In cluster mode, delete row operation from user 

is intercepted to invoke 2PC Coordinator, which 

subsequently sends the deleteRow command 

along with session id, host id, transaction id 

(global timestamp), and the row key. This is 

replicated across the followers in a manner 

similar to the addRow request. 

readRow: 

H2 processes read operation using 

MVPrimaryIndex as a cache. These read 

operations are intercepted at the 

MVPrimaryIndex get request and processed 

using a readRow request on the local 

DataManager. There is no need to replicate the 

request to followers as each DataManager has a 

copy of all the prewrites and can return any 

updates within that transaction. 

 

3.2 Atomic commitment 

Atomic commitment is achieved through the 

two-phase commit protocol. 

In the first phase of two-phase commit, the 2PC 

Coordinator issues prewrite commands Prewrite 

(X) (where X is the key in the database index 

identifying the row) for each of the write 

requests (create-row, update-row, or delete-

row) received from the user. The Data Managers 

check for conflicts (both read-write and write-

write) before accepting the prewrite requests. If 



a node is able to allow the prewrite Prewrite (X), 

the prewrite is recorded in an in-memory data 

structure and the node responds back with OK 

vote. If a node cannot allow the prewrite due to 

conflicts (either read-write or write-write), then 

the node responds back with ABORT vote. The 

coordinator proceeds with the transaction if it 

receives OK vote from all the followers. 

Otherwise, the coordinator sends ABORT 

message to all followers, appends abort record 

to the commit log, and aborts the transaction. In 

case of failure at any of the nodes before 

receiving response for prewrite operations, the 

coordinator waits up to a pre-configured period 

of time (currently, 200 ms) before aborting the 

transaction. 

When the 2PC Coordinator receives read 

requests Read (X) (where X is the key in the 

database index identifying the row), the 

coordinator need not send the request to 

followers as the coordinator also maintains the 

status of prewrites just like any other node 

participating in the transaction. The coordinator 

responds by checking its data manager for 

current value of X. 

When the user sends commit request, the 2PC 

Coordinator sends a PREPARE command to all 

followers. The followers then persist the 

prewrite state for the transaction and also the 

commit log record. At this point, the 

implementation persists two separate log files – 

first being log of pending prewrites and second 

being the commit log. The prewrite log is 

overwritten every time, and the commit log is an 

append only log. The commit log is cleaned up 

only during a recovery scenario. (This can be 

improved by pruning the log based on a 

schedule.) 

In the second phase of the two-phase commit, 

the coordinator appends commit entry to its 

commit log, and sends commit message to all the 

followers. The data managers make sure that the 

writes are performed for each of the pending 

prewrites in the transaction. Successful 

prewrites during the first phase of the two-phase 

commit process mean that there will be no 

conflicts during the second (commit) phase. We 

will see why this is so when we discuss 

concurrency in the next section. The coordinator 

waits for all messages in response to the commit 

request before committing the transaction and 

writing transaction end entry to the commit log.  

If the coordinator fails after writing commit log 

entry and before writing transaction end entry, 

the coordinator will try to recover after restart 

(manually) by requesting status messages from 

all followers. Based on the result from the 

followers, the coordinator performs COMMIT or 

ABORT locally. This recovery requires all 

followers to respond with same status for the 

transaction.  

Further, a follower node can fail after prepare 

phase. After the failed follower node is started 

(manually), the node will check for any prepared 

transactions that were not committed from its 

commit log and asks the coordinator for the 

result of the transaction(s). Based on the 

response from coordinator, the node will 

perform COMMIT or ABORT on its end for the 

transaction(s). If, the node is unable to contact 

the coordinator for any reason, the node will 

keep trying to reach coordinator till it succeeds. 

This is a limitation of the 2PC process. 

Further, in order to avoid reading from disk for 

transaction status, the log manager keeps a copy 

of the commit log in-memory.  

 

 

 

 

 

 



3.3 Example 

 

 

FIG. 3: 2PC for replication and atomic 

commitment 

 

FIG. 3 illustrates the 2PC process using an 

example transaction that includes one write 

operation on X, followed by a read operation on 

X. In this example, there are two follower nodes. 

When the user starts transaction, the 

coordinator creates a transaction locally. When 

the user requests write on X, the coordinator 

sends prewrite request to followers. The 

coordinator sends the session id, the timestamp 

of the transaction, host id, command, and actual 

data as part of the request. The followers make 

concurrency checks (as will be discussed in the 

next section) before sending OK vote to the 

coordinator. 

Subsequently, in FIG. 2, user requests read on X. 

The coordinator sends read request to the local 

data manager only and provides the response. 

After the successful, write and read on X, user 

commits the transaction. At this point, the 

coordinator sends commit message to the 

followers. The followers convert pending 

prewrites (prewrite on X) to write on X. The data 

mangers issue actual write operation to the H2 

MVStore before calling commit on the relevant 

session.  

It is to be noted that the followers may not have 

an associated user session when the commit 

request is received by the followers. User session 

only exists at the coordinator. Therefore, before 

commit, the followers check if an active session 

already exists. If not, the followers create a new 

session for the given combination of session id 

and host id. The session is re-used for 

subsequent requests for the same combination 

of session id and host id. The relevant session 

created locally is used to perform commit 

operation at the followers. With the current 

implementation, the session objects are not 

being cleaned. The session id is assigned using a 

sequence number and the number of parallel 

sessions is limited in H2 to a configurable 

number. So, the number of session objects can 

only grow up to the number of maximum 

sessions allowed. Keeping this in mind, I have not 

tried to address the problem of increasing 

number of session objects in cache. An LRU 

based eviction mechanism can easily be 

implemented to remove session objects that are 

not used often.  

 

4 Concurrency using Timestamp 

Ordering 

Data Manager implements concurrency using 

timestamp ordering. In the current version of the 

implementation, timestamp ordering is achieved 

by using a global timestamp for the cluster. The 

global timestamp is a timestamp issued by a 

node designated as the timestamp server. For 

every transaction, the timestamp server issues 

the transaction id. For transactions started on 

the timestamp server, the timestamp is issued 

locally. And, for transactions started on a node 

that is not a designated timestamp server, the 

node issues gRPC command to the designated 

timestamp server for the timestamp. 



Since timestamp is issued by a single server, the 

timestamps are guaranteed to be in order. I 

acknowledge that the delay added by the gRPC 

request can cause variances. In the interest of 

making a version of implementation possible for 

the project, the variances caused by this delay 

were ignored. This can be improved by using a 

timestamp range used in Spanner[6] or in 

Cockroach DB[7]. 

The algorithm used for concurrency is derived 

from [8] and is provided in Table 1 hereunder. 

 

1: Each transaction receives a timestamp 
when it is initiated at its site of origin; 
2: Each read R or write W operation which is 
required by a transaction has the timestamp 
of the transaction; 
3: Each data item(x) contains the following 
information: 
  (i) WTM (x) - the largest timestamp of a 
write operation on x; 
  (ii) RTM (x) - the largest timestamp of a read 
operation on x; 
4: Let TS be the timestamp of a prewrite 
operation PWi on data item x; 
              If TS < RTM(x) or TS < WTM (x) then 
                 reject PWi and restart the 
transaction; 
              else 
                 put the PWi and its TS into the 
buffer; 
5: Let TS be the timestamp of a read 
operation Ri on data item x, and TS(PW− min) 
the lower timestamp of any prewrite in the 
buffer; 
              If TS < WTM(x) then 
                 reject Ri and restart the transaction; 
              else // TS >= WTM (x) 
                If (no PWi in the buffer) 
                  execute Ri and RTM(x)= 
max(RTM(x), TS); else 
                    If TS <= TS(PW-min) then 
                      execute Ri and RTM(x) = 
max(RTM(x), TS); 

                    else // there is one (or more) PW 
with TS(PW) < TS 
                           Ri is buffered until all 
transactions which 
                           has TS(PW) < TS commit; 
6: Let TS be the timestamp of write operation 
Wi on data item x. This operation is never 
rejected; however, it is possibly buffered if 
there is a prewrite operation PW(x) with 
TS(PW)<TS. Wi will be executed and 
eliminated from the buffer when all prewrites 
with smaller timestamp have been eliminated 
from the buffer. 

Table 1: Timestamp ordering with 2PC [8] 

 

The implementation logic for the algorithm 

described above can be found in the Data 

Manager (DataManager.java in the source code). 

 

5 Performance evaluation 

The performance data is provided here in the 

following in Table 2. The data is included for H2 

as a single node, H2 native cluster (two nodes), 

H2 cluster single node, H2 cluster with 1 

follower, and H2 cluster with 3 followers. 

 

Single Node 
 
Insert 100 rows: 20 ms; Commit: 6 ms 
Select 100 rows: 10 ms 
Update 100 rows: 16 ms; Commit: 4 ms 
 
Two Node HA (native cluster mode) 
 
Insert 100 rows: 23 ms; Commit: 10 ms 
Select 100 rows: 8 ms 
Update 100 rows: 30 ms; Commit: 5 ms 
 
H2 Cluster (Coordinator only) 
 
Insert 100 rows: 100 ms; Commit: 38 ms 
Select 100 rows: 12 ms 



Update 100 rows: 16 ms; Commit: 4 ms 
 
H2 Cluster (1 follower) 
 
Insert 100 rows: 374 ms; Commit: 44 ms 
Select 100 rows: 11 ms 
Update 100 rows: 669 ms; Commit: 78 ms 
 
H2 Cluster (3 followers) 
 
Insert 100 rows: 452 ms; Commit: 56 ms 
Select 100 rows: 13 ms 
Update 100 rows: 745 ms; Commit: 55 ms 

Table 2: Performance data 

 

The performance data shows that there is 

significant degradation in performance. The 

latencies introduced are primarily due to the 

gRPC delays and the additional log writes. 

In the current state of implementation, each 

data operation command (addRow, updateRow, 

deleteRow) is being sent to followers separately. 

And the delays accumulate with increasing 

number of statements. 

Further, performance on update statements is 

twice worse because update is implemented as 

two operations in H2 – an add operation 

followed by a delete operation. And, therefore, 

there are 2X messages being sent for update 

operation. 

I believe this can be improved significantly by 

accumulating all write operations, and sending 

all the operations along with the PREPARE 

command. 

 

6 Future work 

As noted throughout the paper, many 

improvements and optimizations are possible 

within the current implementation. The notable 

ones are: combining data and commit log into a 

single log file, using timestamp range for 

timestamp ordering instead of a global 

timestamp, and replicating all write operations 

in a transaction as part of PREPARE command. 

Further, the project currently provides an 

additional layer of concurrency to make things 

work in cluster mode. This can be improved by 

integrating with H2’s MVCC (Multi-Version 

Concurrency Control) implementation. 

Specifically, MVCC can be integrated with global 

timestamp so that MVCC snapshots are 

synchronized across nodes. This way it is possible 

to work with H2’s native concurrency 

mechanism (with some updates) instead of 

introducing another layer of concurrency control 

on top of the database. I believe this can provide 

additional performance benefits. 

 

7 Conclusion 

In conclusion, this project provides a simple 

implementation of clustering for H2. The 

implementation allows using H2 in a real cluster 

mode across many nodes without any major 

configuration requirements. The 

implementation can be easily adapted to 

embedded mode of H2 as well. The 

implementation can make use of many 

performance enhancements noted in the 

description. However, I believe the current 

implementation is a good starting point, and the 

work can be enhanced easily to make it useful for 

others. 
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