
Clustering implementation for H2 database

Arun Narasani

(GitHub: https://github.com/sfbayhacker/h2database/tree/cs244b-master)

Abstract

This project is an implementation of clustering

for H2[1], an open source Java SQL database. The

default storage subsystem in H2 is a multi-

versioned persistent and log structured key-

value store. The project achieves distributed

transactions for simple table operations using 2

phase commit protocol (2PC). Replication is

achieved by intercepting table level operations

and sending messages synchronously to replicas

using gRPC as part of the 2PC. And, concurrency

is managed using timestamp ordering of

operations. The timestamp used for ordering is a

cluster level global timestamp assigned by a

designated node from the cluster acting as a

timestamp server.

1 Introduction

1.1 H2

H2[1] is a light-weight SQL database with

support for transactions. H2 supports both

embedded mode (in-memory) and server mode

(persisted in a file). In server mode, data is

persisted in a single file for each database. H2

provides support to encrypt the files.

H2 is written in Java and is extremely popular

among Java based frameworks and projects. For

example, H2 is widely used as a test dependency

in spring-boot projects for testing any SQL

database related functionalities. H2 works very

well with popular Object Relational Mapping

(ORM) frameworks such as Hibernate.

Maven public repository suggests that H2 is used

in 5,789 artifacts. It is fair to say that H2 is the

de-facto in-memory SQL database used for

testing SQL database related functionalities.

H2 comes with a simple clustering feature

(hereinafter, referred to as “native” cluster

mode or implementation) [3]. The native cluster

mode is limited to two nodes and is more akin to

active-active high availability mode. In the native

cluster mode, replication is achieved at the SQL

level. SQL commands are executed

independently at both nodes to achieve

replication. This approach to clustering comes

with certain limitations. One such limitation is

related to inconsistent behavior of certain SQL

commands/functions supported in H2 such as

UUID(), SECURE_RAND(), SESSION_ID(). Because

replication is based on SQL commands, same

command may result in different values on the

two nodes. This limitation means that users will

have to forego certain features to run H2 in

native cluster mode.

I believe the authors took the simple approach

for two reasons. One, the primary use-case for

H2 is as an in-memory database for unit tests.

And, two, the project is an open source project

with only four primary developers. Therefore,

the need to support full clustering is probably

not the highest of priorities for the authors.

However, there are many use cases that can

benefit from using a clustered H2 database. One

such example use case is testing behavior of

https://github.com/sfbayhacker/h2database/tree/cs244b-master

multiple instances of a micro-service running on

docker containers without having to install a

physical database server. In a typical micro-

services application stack, the micro-services are

stateless, and they use a common database

server hosted locally or in the cloud. And, making

a database server available is not always

practical, especially for running tests in the CI/CD

pipeline or even in local developer

environments.

1.2 Motivation and target use-case

The idea behind this project is to first and

foremost learn some concepts related to

distributed systems. And, in the process,

hopefully, fill the gap in the native cluster

implementation of H2 to support additional use

cases as discussed.

Given the tight bounds on the project timelines,

the project goals were limited to

implementation of clustering for databases with

simple key-value pair based table structures.

Nothing in the implementation assumes key-

value pair data structures. However, there is an

implicit assumption that there is a key identifying

each row. This can be either the key as defined

by a primary key definition, or a column

guaranteed to have unique value. The current

implementation assumes that index level key

exists for each row. The assumption is fair and

works well with H2, as H2 assigns a primary key

(based on a serial number) even when there is

no primary key specific for a table.

The implementation addresses the three aspects

of replication, atomic commitment, and

concurrency control. I chose to use 2PC as a

consensus mechanism for replication and as a

distributed commit protocol. This should serve

the purpose for most testing use-cases while

providing reasonable performance. I chose to

use timestamp ordering for concurrency control.

In section 2, I discuss the overall architecture of

how distributed database management is

achieved. In section 3, I discuss the

implementation details of replication and atomic

commitment using 2PC. In section 4, I discuss the

implementation details of concurrency control

using timestamp ordering.

The primary target use-case for this

implementation of clustering feature is test

automation for SQL database related

functionalities. While performance is not a major

focus, reasonable performance is expected

when using H2 with clustering enabled. In

section 4, I discuss the impact of distributing

transactions on transaction throughput by

providing performance data, benchmarked

against the original implementation of H2.

2 Architecture and design

FIG. 1: Distributed Database Architecture

FIG. 1 depicts the distributed database

architecture. The distributed database is a

collection of homogeneous nodes. Each node is

a H2 database server with MVStore[2] (the

multi-version store in H2) as the default store for

managing data. Each node can act either as a

coordinator or a follower for any given

transaction.

Users always operate in the context of a session.

And there can be only one transaction within a

session at any single point in time. And, users

may start multiple sessions in parallel at any

single node.

One of the primary goals of this project is to

support transactions as part of the clustering

implementation. While MVStore provides

support for transactions in a single node,

clustering implementation must take care of

atomic commitment across the nodes to support

transactions. To achieve atomic commitment

across the nodes, two-phase commit or 2PC is

used as the consensus mechanism for the nodes

to agree on operations being performed on

data[5].

In the context of a given transaction, the two-

phase commit coordinator interacts with data

managers at all nodes including the one at the

coordinator to perform operations. The

operations are performed at all nodes within the

context of the session to which the transaction

belongs, where the session is identified by the

session id. Followers create a session and cache

the local session object for future re-use with the

coordinator session id as the key.

Since sessions can be started at the coordinator

(which can potentially be different for different

transactions) and each coordinator assigns

session ids independently, it is possible that

session ids can collide. This collision in session ids

can create inconsistencies in cache of session

objects at the followers. To overcome this

problem, the followers identify sessions based

on a combination of session id (as defined by H2)

and a unique host id assigned to each node in the

cluster. Since host id is always unique, the

combination of session id and host id is

guaranteed to be unique.

FIG. 2: Component interactions to distribute

table level operations

FIG. 2 is a block diagram illustrating the flow of

control between the various components.

FIG. 2 illustrates the various components

involved in this project. The components

highlighted in green are new components added

to the existing code base of H2. The distributed

database illustrated in FIG. 1 is achieved by way

of intercepting row level operations on MVTable

(MVTable.java in the source code) and

MVPrimaryIndex (MVPrimaryIndex.java in the

source code) classes (not shown) that operate on

MVStore (MVStore.java in the source code).

2PC Coordinator (TwoPCCoordinator.java in the

source code) implements the coordinator logic

and is responsible for making calls to followers

and receiving messages from followers. 2PC

Coordinator makes use for gRPC channel to

create gRPC clients to send protocol buffer

messages to followers.

Command Processor (CommandProcessor.java

in the source code) implements the follower

logic to receive messages via gRPC channel and

perform necessary operations via the Data

Manager. Command Processor with the help of

a 2PC Follower (TwoPCFollower.java in the

source code) also takes care of sending messages

to the coordinator of a transaction. This is

needed when a follower recovers after a crash

and finds prepare log records for transaction

that are yet to be committed.

Data Manager (DataManager.java in source

code) implements the data structures for

maintaining prewrites, and with the help of a log

manager (LogMananger.java in source code)

performs necessary operations to persist

commit log information and prewrites state to

disk. In addition, Data Manager is responsible for

performing necessary concurrency checks for

prewrites based on timestamp assigned to

transactions.

Data Manager is a new layer added on top of

MVStore to facilitate data management in the

two-phase commit process and concurrency

control using timestamp ordering.

3 Replication and atomic

commitment using 2PC

3.1 Replication

Replication is achieved by synchronously

distributing operations within a transaction. If

the cluster mode is enabled, write operations

from the user are intercepted at the node where

user is providing requests and corresponding

calls are routed to 2PC Coordinator. The 2PC

Coordinator is responsible for delegating the

calls to Data Managers (local and remote) to

perform necessary operations.

Data Managers (local and remote) perform

operations in the order received to achieve

replication with consistency.

The following commands were implemented to

achieve replication.

addRow:

In cluster mode, add row operation from user is

intercepted to invoke 2PC Coordinator, which

subsequently sends the addRow command along

with session id, host id, transaction id (global

timestamp), and the row data. The 2PC

Coordinator sends the addRow command to the

local DataManager. It also sends a gRPC request

to all the followers to perform a rowOp with the

addRow request. The Command Processor at the

followers processes the rowOp and sends it to

the its DataManager. The local DataManager

replicates the addRow request.

updateRow:

In cluster mode, update row operation from user

is intercepted to invoke 2PC Coordinator, which

subsequently sends the updateRow command

along with session id, host id, transaction id

(global timestamp), the old row data, and the

new row data. This is replicated across the

followers in a manner similar to the addRow

request.

deleteRow:

In cluster mode, delete row operation from user

is intercepted to invoke 2PC Coordinator, which

subsequently sends the deleteRow command

along with session id, host id, transaction id

(global timestamp), and the row key. This is

replicated across the followers in a manner

similar to the addRow request.

readRow:

H2 processes read operation using

MVPrimaryIndex as a cache. These read

operations are intercepted at the

MVPrimaryIndex get request and processed

using a readRow request on the local

DataManager. There is no need to replicate the

request to followers as each DataManager has a

copy of all the prewrites and can return any

updates within that transaction.

3.2 Atomic commitment

Atomic commitment is achieved through the

two-phase commit protocol.

In the first phase of two-phase commit, the 2PC

Coordinator issues prewrite commands Prewrite

(X) (where X is the key in the database index

identifying the row) for each of the write

requests (create-row, update-row, or delete-

row) received from the user. The Data Managers

check for conflicts (both read-write and write-

write) before accepting the prewrite requests. If

a node is able to allow the prewrite Prewrite (X),

the prewrite is recorded in an in-memory data

structure and the node responds back with OK

vote. If a node cannot allow the prewrite due to

conflicts (either read-write or write-write), then

the node responds back with ABORT vote. The

coordinator proceeds with the transaction if it

receives OK vote from all the followers.

Otherwise, the coordinator sends ABORT

message to all followers, appends abort record

to the commit log, and aborts the transaction. In

case of failure at any of the nodes before

receiving response for prewrite operations, the

coordinator waits up to a pre-configured period

of time (currently, 200 ms) before aborting the

transaction.

When the 2PC Coordinator receives read

requests Read (X) (where X is the key in the

database index identifying the row), the

coordinator need not send the request to

followers as the coordinator also maintains the

status of prewrites just like any other node

participating in the transaction. The coordinator

responds by checking its data manager for

current value of X.

When the user sends commit request, the 2PC

Coordinator sends a PREPARE command to all

followers. The followers then persist the

prewrite state for the transaction and also the

commit log record. At this point, the

implementation persists two separate log files –

first being log of pending prewrites and second

being the commit log. The prewrite log is

overwritten every time, and the commit log is an

append only log. The commit log is cleaned up

only during a recovery scenario. (This can be

improved by pruning the log based on a

schedule.)

In the second phase of the two-phase commit,

the coordinator appends commit entry to its

commit log, and sends commit message to all the

followers. The data managers make sure that the

writes are performed for each of the pending

prewrites in the transaction. Successful

prewrites during the first phase of the two-phase

commit process mean that there will be no

conflicts during the second (commit) phase. We

will see why this is so when we discuss

concurrency in the next section. The coordinator

waits for all messages in response to the commit

request before committing the transaction and

writing transaction end entry to the commit log.

If the coordinator fails after writing commit log

entry and before writing transaction end entry,

the coordinator will try to recover after restart

(manually) by requesting status messages from

all followers. Based on the result from the

followers, the coordinator performs COMMIT or

ABORT locally. This recovery requires all

followers to respond with same status for the

transaction.

Further, a follower node can fail after prepare

phase. After the failed follower node is started

(manually), the node will check for any prepared

transactions that were not committed from its

commit log and asks the coordinator for the

result of the transaction(s). Based on the

response from coordinator, the node will

perform COMMIT or ABORT on its end for the

transaction(s). If, the node is unable to contact

the coordinator for any reason, the node will

keep trying to reach coordinator till it succeeds.

This is a limitation of the 2PC process.

Further, in order to avoid reading from disk for

transaction status, the log manager keeps a copy

of the commit log in-memory.

3.3 Example

FIG. 3: 2PC for replication and atomic

commitment

FIG. 3 illustrates the 2PC process using an

example transaction that includes one write

operation on X, followed by a read operation on

X. In this example, there are two follower nodes.

When the user starts transaction, the

coordinator creates a transaction locally. When

the user requests write on X, the coordinator

sends prewrite request to followers. The

coordinator sends the session id, the timestamp

of the transaction, host id, command, and actual

data as part of the request. The followers make

concurrency checks (as will be discussed in the

next section) before sending OK vote to the

coordinator.

Subsequently, in FIG. 2, user requests read on X.

The coordinator sends read request to the local

data manager only and provides the response.

After the successful, write and read on X, user

commits the transaction. At this point, the

coordinator sends commit message to the

followers. The followers convert pending

prewrites (prewrite on X) to write on X. The data

mangers issue actual write operation to the H2

MVStore before calling commit on the relevant

session.

It is to be noted that the followers may not have

an associated user session when the commit

request is received by the followers. User session

only exists at the coordinator. Therefore, before

commit, the followers check if an active session

already exists. If not, the followers create a new

session for the given combination of session id

and host id. The session is re-used for

subsequent requests for the same combination

of session id and host id. The relevant session

created locally is used to perform commit

operation at the followers. With the current

implementation, the session objects are not

being cleaned. The session id is assigned using a

sequence number and the number of parallel

sessions is limited in H2 to a configurable

number. So, the number of session objects can

only grow up to the number of maximum

sessions allowed. Keeping this in mind, I have not

tried to address the problem of increasing

number of session objects in cache. An LRU

based eviction mechanism can easily be

implemented to remove session objects that are

not used often.

4 Concurrency using Timestamp

Ordering

Data Manager implements concurrency using

timestamp ordering. In the current version of the

implementation, timestamp ordering is achieved

by using a global timestamp for the cluster. The

global timestamp is a timestamp issued by a

node designated as the timestamp server. For

every transaction, the timestamp server issues

the transaction id. For transactions started on

the timestamp server, the timestamp is issued

locally. And, for transactions started on a node

that is not a designated timestamp server, the

node issues gRPC command to the designated

timestamp server for the timestamp.

Since timestamp is issued by a single server, the

timestamps are guaranteed to be in order. I

acknowledge that the delay added by the gRPC

request can cause variances. In the interest of

making a version of implementation possible for

the project, the variances caused by this delay

were ignored. This can be improved by using a

timestamp range used in Spanner[6] or in

Cockroach DB[7].

The algorithm used for concurrency is derived

from [8] and is provided in Table 1 hereunder.

1: Each transaction receives a timestamp
when it is initiated at its site of origin;
2: Each read R or write W operation which is
required by a transaction has the timestamp
of the transaction;
3: Each data item(x) contains the following
information:
 (i) WTM (x) - the largest timestamp of a
write operation on x;
 (ii) RTM (x) - the largest timestamp of a read
operation on x;
4: Let TS be the timestamp of a prewrite
operation PWi on data item x;
 If TS < RTM(x) or TS < WTM (x) then
 reject PWi and restart the
transaction;
 else
 put the PWi and its TS into the
buffer;
5: Let TS be the timestamp of a read
operation Ri on data item x, and TS(PW− min)
the lower timestamp of any prewrite in the
buffer;
 If TS < WTM(x) then
 reject Ri and restart the transaction;
 else // TS >= WTM (x)
 If (no PWi in the buffer)
 execute Ri and RTM(x)=
max(RTM(x), TS); else
 If TS <= TS(PW-min) then
 execute Ri and RTM(x) =
max(RTM(x), TS);

 else // there is one (or more) PW
with TS(PW) < TS
 Ri is buffered until all
transactions which
 has TS(PW) < TS commit;
6: Let TS be the timestamp of write operation
Wi on data item x. This operation is never
rejected; however, it is possibly buffered if
there is a prewrite operation PW(x) with
TS(PW)<TS. Wi will be executed and
eliminated from the buffer when all prewrites
with smaller timestamp have been eliminated
from the buffer.

Table 1: Timestamp ordering with 2PC [8]

The implementation logic for the algorithm

described above can be found in the Data

Manager (DataManager.java in the source code).

5 Performance evaluation

The performance data is provided here in the

following in Table 2. The data is included for H2

as a single node, H2 native cluster (two nodes),

H2 cluster single node, H2 cluster with 1

follower, and H2 cluster with 3 followers.

Single Node

Insert 100 rows: 20 ms; Commit: 6 ms
Select 100 rows: 10 ms
Update 100 rows: 16 ms; Commit: 4 ms

Two Node HA (native cluster mode)

Insert 100 rows: 23 ms; Commit: 10 ms
Select 100 rows: 8 ms
Update 100 rows: 30 ms; Commit: 5 ms

H2 Cluster (Coordinator only)

Insert 100 rows: 100 ms; Commit: 38 ms
Select 100 rows: 12 ms

Update 100 rows: 16 ms; Commit: 4 ms

H2 Cluster (1 follower)

Insert 100 rows: 374 ms; Commit: 44 ms
Select 100 rows: 11 ms
Update 100 rows: 669 ms; Commit: 78 ms

H2 Cluster (3 followers)

Insert 100 rows: 452 ms; Commit: 56 ms
Select 100 rows: 13 ms
Update 100 rows: 745 ms; Commit: 55 ms

Table 2: Performance data

The performance data shows that there is

significant degradation in performance. The

latencies introduced are primarily due to the

gRPC delays and the additional log writes.

In the current state of implementation, each

data operation command (addRow, updateRow,

deleteRow) is being sent to followers separately.

And the delays accumulate with increasing

number of statements.

Further, performance on update statements is

twice worse because update is implemented as

two operations in H2 – an add operation

followed by a delete operation. And, therefore,

there are 2X messages being sent for update

operation.

I believe this can be improved significantly by

accumulating all write operations, and sending

all the operations along with the PREPARE

command.

6 Future work

As noted throughout the paper, many

improvements and optimizations are possible

within the current implementation. The notable

ones are: combining data and commit log into a

single log file, using timestamp range for

timestamp ordering instead of a global

timestamp, and replicating all write operations

in a transaction as part of PREPARE command.

Further, the project currently provides an

additional layer of concurrency to make things

work in cluster mode. This can be improved by

integrating with H2’s MVCC (Multi-Version

Concurrency Control) implementation.

Specifically, MVCC can be integrated with global

timestamp so that MVCC snapshots are

synchronized across nodes. This way it is possible

to work with H2’s native concurrency

mechanism (with some updates) instead of

introducing another layer of concurrency control

on top of the database. I believe this can provide

additional performance benefits.

7 Conclusion

In conclusion, this project provides a simple

implementation of clustering for H2. The

implementation allows using H2 in a real cluster

mode across many nodes without any major

configuration requirements. The

implementation can be easily adapted to

embedded mode of H2 as well. The

implementation can make use of many

performance enhancements noted in the

description. However, I believe the current

implementation is a good starting point, and the

work can be enhanced easily to make it useful for

others.

8 Acknowledgements

I would like to thank David Mazieres and Jim

Posen for making the course possible during the

difficult times of COVID-19. Their ideas and

guidance for this project have been very

valuable. Also, the open-ended nature of the

course made it possible for me to work on

something relevant to my interests and at the

same time learn concepts taught during the

course. Thank you!

REFERENCES

1. H2 Database:

https://www.h2database.com/html/ma

in.html

2. H2 Database MVStore reference:

https://www.h2database.com/html/mv

store.html

3. H2 Database Native Clustering

reference:

https://www.h2database.com/html/ad

vanced.html#clustering

4. Philip A. Bernstein and Nathan

Goodman. 1981. Concurrency Control in

Distributed Database Systems. ACM

Comput. Surv. 13, 2 (June 1981), 185–

221.

DOI:https://doi.org/10.1145/356842.35

6846

5. Philip A. Bernstein, Vassco Hadzilacos,

and Nathan Goodman. 1987.

Concurrency control and recovery in

database systems. Addison-Wesley

Longman Publishing Co., Inc., USA.

6. James C. Corbett, Jeffrey Dean, Michael

Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat,

Andrey Gubarev, Christopher Heiser,

Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan,

Hongyi Li, Alexander Lloyd, Sergey

Melnik, David Mwaura, David Nagle,

Sean Quinlan, Rajesh Rao, Lindsay Rolig,

Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, and Dale

Woodford. 2013. Spanner: Google’s

Globally Distributed Database. ACM

Trans. Comput. Syst. 31, 3, Article 8

(August 2013), 22 pages.

DOI:https://doi.org/10.1145/2491245

7. Cockroach DB:

https://www.cockroachlabs.com/blog/li

ving-without-atomic-clocks/

8. Luiz Alexandre Hiane da Silva Maciel. A

TIMESTAMP-BASED TWO PHASE

COMMIT PROTOCOL FOR WEB

SERVICES USING REST ARCHITECTURAL

STYLE

https://www.h2database.com/html/mvstore.html
https://www.h2database.com/html/mvstore.html
https://www.h2database.com/html/advanced.html#clustering
https://www.h2database.com/html/advanced.html#clustering
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/
https://www.cockroachlabs.com/blog/living-without-atomic-clocks/

