
Consensus in the Browser using WebRTC

Blade Chapman

Abstract

The traditional model for consensus-driven
applications is to build a network of managed
servers that vend a large number of clients. This
centralization raises questions of privacy, data
ownership, and reliability for the customers of
these applications. This project explores the po-
tential of achieving consensus on the end-user’s
device as a means of addressing these questions.
We do this by providing an implementation of
the Raft consensus algorithm that can be run
in the browser and communicate directly with
peers via WebRTC. We then demonstrate this
implementation with a simple chat application
that uses Raft to achieve consensus on chat his-
tory. We find that using peer-to-peer channels
for achieving consensus inherently protects the
end user better than traditional architectures,
but requires demanding guarantees on algorithm
latency and ability to adapt to varying network
conditions.

1 Introduction

As software products become more collabora-
tive, achieving consensus has become a common
problem amongst application developers. Cus-
tomers use Facebook Messenger, Google Docs,
and Dropbox’s Shared Folders with the expec-
tation that the data presented is up-to-date and

visible by other collaborators. The traditional
model for building these applications has been
to service a large number of customer devices
with a smaller set of administrated servers and
data centers that do the work of propagating and
persisting data. As evidenced by the popularity
of the aforementioned products, this model has
served the industry well and has proven perfor-
mance and reliability characteristics.

However, recent events have sown doubt
amongst customers’ trust in these centralized en-
tities. Companies whose business models depend
on understanding their users thoroughly are not
directly incentivized to provide products that
protect the privacy and data of their customers.

With this in mind, we set out to explore the
trade-offs in pushing the work of achieving con-
sensus to customer devices. Our approach was
to choose an existing, well understood consen-
sus algorithm and implement it in a peer-to-peer
context. Then, we would use that implementa-
tion to build an example customer-facing appli-
cation to evaluate the performance characteris-
tics of this approach. The result is an implemen-
tation of the Raft [8] consensus algorithm that
can be run entirely in modern browsers, and a
chat application that uses the Raft replicated-
state-machine to achieve consensus on chat his-
tory.

We believe there is significant potential in us-
ing less centralized models to build programs
that meet expectations while respecting the cus-

1



tomer. However, the decentralized approach also
poses new challenges around performance and
predictability that are not as difficult to over-
come in controlled environments.

2 Choosing Raft

Achieving consensus is a fundamental problem
in the space of distributed computing. As a
result, many distributed consensus algorithms
exist, including the pervasive Paxos [3], View-
stamped Replication [7], and Proof of Work [6].
When considering algorithms for this project, we
sought out these characteristics:

• Understandability: This project was con-
ceived primarily as a learning exercise for
the author, who has minimal prior dis-
tributed systems experience. Therefore, the
feasibility of implementing the consensus al-
gorithm in the time allotted was a driving
concern.

• Low Latency: A primary objective of this
project was to use the consensus algorithm
in an interactive application. To provide a
responsive experience, low latency was im-
portant to consider.

With these objectives in mind, the Raft con-
sensus algorithm was the clear choice. The pri-
mary conceit of Raft is to be understandable
without sacrificing performance when compared
to Paxos, and it has demonstrated sufficiently
low latency when configured correctly.

3 Choosing the Browser

In addition to implementing a consensus algo-
rithm, another primary objective of the project

was to implement a common type of consensus-
based application. The browser was chosen as
the environment for this application for a num-
ber of reasons:

• Accessibility: A browser-based applica-
tion requires minimal setup on behalf of the
customer.

• Prior Experience: The author has prior
experience working in the browser environ-
ment. Familiarity with the development
toolchain would allow the author to concen-
trate on the task of implementing Raft.

• WebRTC: The author was interested in
learning and evaluating WebRTC as an al-
ternative to the traditional server-client ar-
chitecture.

4 WebRTC

WebRTC [2] (Web Real-Time Communication)
is a set of protocols and standards that en-
able web applications to communicate directly
without the need for an intermediate server or
browser plugins. As of June 2020, it is supported
on all major browsers.

4.1 Making a Connection

The primary challenge in establishing a We-
bRTC connection is circumventing each peer’s
individual network conditions. Local area net-
works, firewalls, and generally unpredictable net-
work configurations can make it difficult to route
packets between peers. WebRTC solves this
problem by using STUN (Session Traversal of
UDP through NAT) servers to gather publicly
available routing information, and a relay server
to distribute that routing information to peers.

2



When a peer seeks to establish a WebRTC
connection, it first gathers information on how
other peers may route packets to it. This infor-
mation, known as an ICE (Interactive Connec-
tivity Establishment) candidate, is then sent to
the target peer via the known relay server. Upon
receiving an ICE candidate, the receiving peer
registers that information, seeks out its own ICE
candidates, and relays them back to the sending
peer. At this point, both peers have the neces-
sary knowledge to establish a direct peer-to-peer
connection.

In addition to the connectivity information,
the initiating peer must also relay information
as to what kind of channel to establish. We-
bRTC currently supports audio, video, and ar-
bitrary data channels. For our Raft implementa-
tion, we opted to use the data channel and send
packets between peers as stringified JSON. This
information is encapsulated as an SDP (Session
Descriptor Protocol) message and offered from
the initiating peer to the receiving peer via the
relay server. The receiving peer then creates its
own answering SDP and responds to the sending
peer, again using the relay server.

Once connectivity and session information are
exchanged, the two peers have all the necessary
information to begin sending packets directly to
each other.

5 Implementation

5.1 Building a Cluster

In order for our application to work without each
peer having predefined knowledge of each other
peer in the cluster, we designed a simple proto-
col that allowed peers to discover and connect
to each other peer in the cluster as they come
online. The protocol defines four messages: reg-

ister, discover, offer and answer, as described in
Figure 1.

Figure 1: Sequence diagram describing cluster
construction

When a node comes online and seeks to be-
come part of the cluster, it issues a register call
to our signaling server, which records the node’s
uuid as well as a socket for future communication
with that node.

Every time a new node becomes registered,
our signaling server broadcasts a discover mes-
sage to every registered node prior to that point
with the uuid of the newly registered node.

Upon receiving a discover message from the
signaling server, the receiving node then creates
an offer containing its SDP and forwards that
via the signaling server to each newly discovered

3



node.

Finally, upon receiving an offer message from
the signaling server, the receiving node forwards
an answer message along with its own SDP via
the signaling server to the originator of the offer
message. At this point, every node in the cluster
has the necessary information to establish peer
to peer connections with each other and we can
begin our Raft session.

5.2 Signaling and STUN Servers

In order to establish WebRTC connections, we
built a simple signaling server that provided
RPC and broadcast functionality to registered
nodes. When communicating with our signaling
server, clients must either provide a target uuid
for their message to be forwarded or specify their
intent to broadcast to all registered clients. Mes-
saging with clients is conducted over web sockets.
The server is implemented in Typescript and run
via ts-node.

For gathering ICE candidates, we use publicly
available STUN servers provided by Google.

5.3 Raft

To understand the intricacies of the Raft con-
sensus algorithm, we built a from-scratch imple-
mentation in Typescript. For the sake of testing,
we began by implementing Raft in a single pro-
cess running in Node. This allowed us to easily
construct scenarios described in the original Raft
paper and quickly identify mistakes in our im-
plementation. Once we felt that the fundamen-
tals of our implementation were correct, we ex-
tracted our in-process RPC implementation and
replaced it with RPC conducted over WebRTC.
This approach has the added benefit of making
our implementation somewhat platform agnos-

tic. With minimal effort, we could provide RPC
implementations over arbitrary transports and
have versions of Raft that work in a browser us-
ing XMLHttpRequests, or in a headless context
via Node and websockets.

Our specific implementation of Raft includes
leadership election, appending entries, and client
message forwarding. It does not implement clus-
ter membership changes or log compaction.

5.4 Chat Application

To evaluate our implementation of Raft, we built
a chat application that uses a replicated state
machine to maintain chat history. One can envi-
sion this to be useful, as inconsistent chat histo-
ries can lead to confusion amongst participants.

Each client’s chat history is comprised of only
the committed entries in the log. Therefore, if
a client becomes separated from the cluster, it
will no longer be able to make progress on the
log and any attempt to send messages will not
be committed. If an offline client comes back
online, any log entries committed by the rest of
the cluster in the meantime will be replicated
and the client will once again be able to send
messages, as long as the cluster has quorum.

Because all communication is done directly
between peers via WebRTC, no data is ever
exposed to a centralized entity. Therefore,
the peer-to-peer approach inherently protects a
user’s data better than in the centralized ap-
proach, where a user’s data may become com-
promised as part of an attack on the managing
entity.

4



Figure 2: Latency of system over cluster size.
Conducted in Google Chrome on a 2016 Mac-
Book Pro

6 Challenges

6.1 Scalability

To evaluate the latency of our implementation,
we utilized Google’s Puppeteer [1] browser au-
tomation tooling to simulate Raft followers send-
ing append RPCs sequentially for a span of 10
seconds. Measuring the number of sequential
messages committed while varying the cluster
size provided insight into how the implementa-
tion scales with larger clusters. We conducted
10 trials for each cluster size. The results of this
evaluation can be seen in Figure 2.

We observed that the latency of the system
degraded rapidly with an increase in cluster size
before beginning to stabilize. To some degree,
this is to be expected, as larger clusters require
more messages to be sent between peers before
log entries can be committed. However, we be-
lieve that the degraded performance with clus-
ter size also reflects current browsers’ limitations
around maintaining large numbers of RTC con-
nections.

6.2 Byzantine Fault Tolerance

Raft is not a byzantine fault tolerant consensus
algorithm. However, the nature of achieving con-
sensus in a user’s browser exposes the system to
attacks from untrusted parties. While this can
be mitigated with digital signing of RPCs, the
cryptographic operations necessary would no-
ticeably affect the latency of the system, as web
browsers are still developing performant support
for cryptography.

For these reasons, future additional work may
want to evaluate the feasibility of byzantine
fault tolerant algorithms in the browser context.
Practical Byzantine Fault Tolerance (PBFT) [4]
demonstrates byzantine fault tolerance with ac-
ceptable latency numbers for an application re-
quiring responsiveness, such as chat. However,
PBFT still relies on a concept of weak synchrony
in which the network latency does not increase
exponentially. This weak synchrony may not
necessarily hold in less predictable environments
as described in section 6.3.

6.3 Predictability

Many consensus-driven applications operate in
highly controlled environments with certain
guarantees on hardware and network perfor-
mance. Achieving consensus on end-customer
devices means that we cannot operate with any
assumptions about the customer’s computing
conditions. In this context, the Raft consensus
algorithm suffers, as it relies on tuned timeouts
to determine when to begin leader election and
cluster membership changes. For this project,
the timeouts were manually chosen to reflect the
author’s network conditions. Future work may
consider using dynamic timeouts as cluster mem-
bers’ network conditions change.

5



Honey Badger [5] is a consensus algorithm de-
signed with unpredictable network conditions in
mind. However, its relatively high latency when
compared with Raft and PBFT makes it less
ideal for low-latency applications such as chat.

6.4 Persistence

In a centralized model, the problem of persisting
data is handled by highly reliable data centers
and servers. The decentralized model offers a
challenge in that we cannot necessarily rely on
clients to persist the log.

In our particular implementation of Raft in
the browser, the closest we can achieve to per-
sisting data is storing state using the browser
local storage API. When recovering a session, a
Raft node can seek out that stored state and use
it to re-join a group. As described in section
4, a recovered node would initiate the WebRTC
connection protocol and reconnect with all other
live nodes.

In the event that a client deletes their per-
sisted state, either by removing their browser
or clearing their local browser data, that client
would no longer be able to resume its role in the
cluster. After a predetermined duration of not
receiving RPCs from a deleted node, a live node
in the cluster would initiate a cluster member-
ship change that removes the stale node.

7 Conclusion

The centralized model for building consensus-
based applications is often the go-to choice, as
it provides more predictability and control for
the implementor. However, this approach also
requires trust from the end customer and incurs
management costs for the providing entities. As

network availability increases and consumer de-
vices become more powerful, we believe there is
significant potential in the decentralized model
for building popular, reliable, trustworthy appli-
cations.

In this paper, we analyzed the viability of this
decentralized approach by using accepted tech-
nologies to build a product with high expecta-
tions on reliability and latency. We provided
a from-scratch implementation of the Raft con-
sensus algorithm that uses WebRTC to facili-
tate direct communication between cluster peers.
We used our Raft implementation to build and
evaluate a chat application with consensus-based
chat history. We found that Raft and WebRTC
could be used to build a product that met cus-
tomer expectations without exposing customer
data to a centralized entity. We also found that
the decentralized environment introduced new
challenges around scalability, predictability of
network conditions, and trustworthy persistence
of customer data.

References

[3] L. Lamport. Paxos made simple. ACM
SIGACT News, 2001.

[4] B. Liskov and M. Castro. Practical Byzan-
tine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems,
2002.

[5] A. Miller and Y. Xia. The Honey Badger
of BFT protocols. Proceedings of the 23rd
ACM Conference on Computer and Com-
munications Security (CCS), 2016.

[6] S. Nakamoto. Bitcoin: A peer-to-peer elec-
tronic cash system. 2008. url: http : / /

bitcoin.org/bitcoin.pdf.

6



[7] B. M. Oki and B. H. Liskov. Viewstamped
replication: A new primary copy method to
support highly available distributed systems.
Pric. PODC’88, ACM Symposium on Prin-
ciples of Distributed Computing, 1988.

[8] D. Ongaro and J. Ousterhout. In Search
of an Understandable Consensus Algorithm.
Proceedings USENIX Annual Technical
Conference ATC, 2014.

7


