Distributed Evolution

Mario Srouji and Josh Payne

June 2020

1 Introduction and Related Work

Reinforcement Learning (RL) allows unsupervised learning of policies to accomplish tasks in
widely different application areas, and it has been proven practically effective when coupled
with non linear function approximators, like DNNs [11, 10]. Together with the creation
of new RL algorithms and the successful re-implementation of old approaches, methods
for accelerating RL have been under investigation in the last years. On the one hand,
researchers proposed RL algorithms with improved sample efficiency (e.g. [1, 15, 12, 18]),
but also generally more complicated and less prone to be analyzed from a theoretical point of
view [8]. On the other hand, significant acceleration has been achieved by efficient schemes
that avoid time costly data movements [2, 3] and through distributed implementations of
RL algorithms [5, 16].

Simple Evolutionary Strategies (ES) have been recently proven to be competitive, al-
though not yet at par, with RL [4, 7, 8, 14, 17]. When compared to RL, ES can be interpreted
as derivative-free direct-policy optimization methods, which either do not make use of the
gradient at all (like in the case of genetic algorithms [17]) or approximate the gradient with
finite differences [14]. ES have several potential advantages: since the fitness evaluation is
independent from action frequency and delayed rewards, ES are also tolerant to extremely
long horizons; furthermore, their computational cost is not affected by the computation
backward passes, temporal discounting, and value function evaluation [14]. Lastly, ES also
scale naturally to distributed systems. This fact represents a fundamental aspect for the
development of effective ES strategies, if one also considers that the effectiveness of ES is
strictly related to the population size and the high chance of finding effective solution even
with random search [8] — in other words, ES are effective only if the population size is
large enough, and the limited memory footprint and computational cost of ES guarantees
exactly this: that a large population can be used. The drawback of ES is that, since fitness
evaluation, and consequently policy update, requires an entire episode to be completed by
the entire population, ES are generally less sample efficient than RL, where policy update
can occur at high frequency while training, e.g. by bootstrapping from the current estimate
of the value function in model-free temporal difference RL [10]. Overall, despite the smaller
computational footprint partially offset the worse computational efficiency, ES are still not
effective as RL in terms of wall-clock time [14, 8].

We show that the computational efficiency of ES can be significantly improved through
a simple yet effective distributed strategy.

2 Distributed Evolutionary Strategies

Generally speaking, gradient-based approaches are difficult to parallelize between machines
in a fault-tolerant manner [9]. However, this drawback does not extend to ES. Unlike
gradient-based methods, which need a somewhat unified and siloed architecture to practi-
cally perform gradient descent, search strategies like ES are designed in such a way that
parallelization is a natural implementation. The basic premise is that population members
which perform well are selected to be modified and perturbed, whereas lower-performing
population members are dropped. Where population members are trained and how they
interact with the ground truth gradient with respect to the other population members does
not matter; a policy that selects population members that perform well is at the core of ES
and can easily be executed by a distribution of machines.

2.1 Distributed Training

The core idea behind distributed evolutionary strategies is that a central leader machine will
select the best performing models for further perturbation and training by worker machines.
The computationally intense aspect of ES is the procedure done on the local worker machine,
and because exploration is randomized, work is not duplicated. The central leader machine
sends out the best performing models to the worker machines, which perform a set amount of
iterations of training on this model, marginally improving the most performance and moving
it in some direction on the gradient before returning the resulting model to the leader. The
leader will then compare each of the models it has received from all of the workers, selecting
the best performing one with respect to the fitness score as ascertained from the model’s
performance on a predefined environment, and proceed with the training iterations with
that model. This iteration process continues until either the maximum number of iterations
has been reached, or until the model has a satisfactory performance; whatever happens first.
Distributed methods for ES have been recently proposed [?] which rely on passing models
between machines. As you might imagine, however, passing weights between members of
a network can put a larger-than-is-desirable load on the network, resulting in high latency.
To minimize data passing from one machine to another, we observed that the seed used
to generate the noise matrix used to perturb the model is sufficient to convey the current
trained state of a model, given its previous weights. That is, if one has a fully trained model,
they can reconstruct this model using the original set of untrained weights and the sequence
of seeds used to generate noise matrices to perturb these weights.

Passing seeds instead of entire weight sets dramatically reduces the amount of data that
is required to be passed across the network. The complete algorithm for seed-passing-based
distributed evolutionary strategies is shown in Algorithm 1.

2.2 Leader Election

We now have a method that trains a model over a distributed network of machines using a
paradigm of a leader and workers. Once a leader has been determined, workers can come
and go as they will without an issue — the leader simply selects the top-performing models
of all the models it receives back from the workers for a given iteration. In this sense, the
system is very worker-fault-tolerant. However, what happens when the leader fails? In this
case, we leverage the leader election procedure as outlined in RAFT [13]. In this case, a
machine is designated as a leader, and the rest as followers. The leader is responsible for

Algorithm 1: Distributed ES
Input: Leader, Workers, number of iterations 4, environment e, noise matrix
generator gen(), population size p
Output: Trained model M
Note: assume model is a function, its output is a fitness function, and we want to
maximize the fitness function.
1 Each of Workers generates duplicated M from random
2 Leader generates seed curr_seed
3 for ¢ iterations:

4 Leader creates empty list fitnessTuples

5 for each worker in Workers:

6 Leader sends curr_seed to worker

7 worker updates M < M * gen(curr_seed)

8 worker generates try_seeds, list length p of random numbers
9 worker creates model fitness tuple worker FitnessTuples
10 for j in range(p):
11 M; < M * gen(try_seeds[j])
12 f < M;(e)
13 worker appends (try_seeds[j], f) to worker FitnessTuples
14 worker sends max(worker FitnessTuples) w.r.t. f back to Leader
15 Leader appends (try_seed, f) from each worker to fitnessTuples
16 curr_seed = max(fitnessTuples) w.r.t. f

17 Leader updates M < M * gen(curr_seed)
18 Leader returns M

model comparison, selection, and distribution as before, and the followers are responsible
for training, as before. The leader will, parallel with training, send out a heartbeat to all
of its followers. If the heartbeat times out on one of the followers, it changes its status to
“candidate”. Upon joining, a new worker receives the current seed sequence from the leader.
Further, all workers are trusted to have the current seed sequence. If any of the workers
times out, it becomes a candidate and issues a RequestVotes RPC with a term number.
Randomized election timeouts are used to prevent split votes. If a worker is elected, it
broadcasts this to the other workers and becomes the leader. Training then continues with
the elected candidate as the leader.

A simpler leader election method is also proposed for a trusted distributed system:
timeouts are determined by end-of-iteration cycle time. This is different for each node, as
training does not have a set runtime. The machine which fails to connect to the predefined
leader port after completing its iteration first assumes the role as leader and immediately
opens up this port to other workers, which return their seeds to this new leader on the
network.

Loss of a leader does not mean loss of a model, as each iteration ensures that the entire
system is updated with the latest weight set to iterate on. The big idea here is that such a
system could be “released” into the world, with any machine joining the network given the
latest weights and able to contribute easily to the training. As long as at least one machine
remains on the network, the training progress is not lost.

3 Experimental Results

Compared with previous work, the synergy within the system enables state of the art
results on multiple locomotion simulations from OpenAl gym and MuJoCo. To demonstrate
the general applicability and effectiveness of our approach, we experiment across a diverse set
of environments, including locomotive and control tasks with both discrete and continuous
actions spaces. We avoid any environment specific hyper-parameter tuning, and fixed all
hyper-parameters throughout the training session and across experiments. In addition,
favoring random seeds has been shown to introduce large bias on the model performance
[6]. Hence for fair comparison we also avoid any specific random seed selection, running
each experimental setup across 5 different random seeds.

H DisES ES DDPG H

LunarLander 0.67 5.67 45
BipedalWalker 9.5 47 240

Ant 70 778 406
HalfCheetah 326 672 762
Hopper 68 302 278

The table above shows the training time in minutes until convergence (learning the
task to the defined reward-threshold), for each environment and training algorithm. Our
Distributed Evolution algorithm is listed in the first column, vanilla ES in the second col-
umn, and Deep Deterministic Policy Gradients (DDPG) in the third column. As we show in
the results, our distributed implementation not only is faster than the standard evolution-
ary strategies baseline, but it is also much faster than a competitive policy-gradient based
algorithm in RL. It is notable that vanilla ES has on average larger training times than
policy gradient algorithms in RL, however with our approach we are able to significantly
reduce the wall-clock time required to learn these complex tasks (at times by an order of
magnitude). This is due to the enhanced exploration of the algorithm, combined with the
ability to spawn much larger population sizes due to the cooperative nature of the clients
in the implementation.

4 Conclusion

In this work, we proposed a novel method of performing evolutionary strategies (ES) al-
gorithms on a distributed system using seed passing and leader election for leader fault
tolerance. We discussed why this procedure gives benefits on top of single-machine ES as

well as gradient-based methods and have supported this discussion with encouraging exper-
imental results. For next steps, we plan to fine-tune our methods, using linear combinations
of models instead of max selection for model selection, as well as explore group ES in the
distributed setting for even higher performance. Ultimately, if a distributed ES system could
learn a complex task such as the game of Go, it would be a monumental breakthrough and
indicate its viability as a scalable alternative to gradient-based methods in deep learning.

References

[1]

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5048-5058. Curran Associates, Inc., 2017.

Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz.
Reinforcement learning through asynchronous advantage actor-critic on a gpu. In ICLR,
2017.

Steven Dalton, Turi Frosio, and Michael Garland. Gpu-accelerated atari emulation for
reinforcement learning. CoRR, abs/1907.08467, 2019.

Madalina M. Drugan. Reinforcement learning versus evolutionary computation: A
survey on hybrid algorithms. Swarm and Evolutionary Computation, 44:228 — 246,
2019.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray
Kavukcuoglu. IMPALA: scalable distributed deep-rl with importance weighted actor-
learner architectures. CoRR, abs/1802.01561, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

Shauharda Khadka, Somdeb Majumdar, Tarek Nassar, Zach Dwiel, Evren Tumer, San-
tiago Miret, Yinyin Liu, and Kagan Tumer. Collaborative evolutionary reinforcement
learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 3341-3350. PMLR, 2019.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear
policies is competitive for reinforcement learning. In NeurIPS, 2018.

Konstantin Mishchenko, Filip Hanzely, and Peter Richtdrik. 99% of parallel optimiza-
tion is inevitably a waste of time. CoRR, abs/1901.09437, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In Maria Florina Balcan and Kilian Q. Weinberger,

[11]

[15]

[16]

[17]

[18]

editors, Proceedings of The 33rd International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research, pages 1928-1937, New York, New
York, USA, 20-22 Jun 2016. PMLR.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, February
2015.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Overcoming exploration in reinforcement learning with demonstrations. 2018
IEEF International Conference on Robotics and Automation (ICRA), pages 6292—6299,
2018.

Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), pages
305-319, 2014.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution
strategies as a scalable alternative to reinforcement learning, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning,
2018.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. Deep neuroevolution: Genetic algorithms are a competi-
tive alternative for training deep neural networks for reinforcement learning. ArXiv,
abs/1712.06567, 2017.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob
Fergus. Improving sample efficiency in model-free reinforcement learning from images,
2019.

