
A Scalable Relaxed Distributed Priority Queue

Bill S Lin
bslin@stanford.edu

Xiaohua (Victor) Liang
xiaohual@stanford.edu

Abstract

We have designed and implemented a scalable and
persistent distributed priority queue system. The
system provides probabilistic priority ordering while
staying horizontally scalable for both read and write.
This system can serve as a fundamental building block
for many modern distributed systems, especially those
with high traffic volume producer/consumer services.
In this paper, we discuss the various aspects of our
design and implementation, the simulation process to
verify the probabilistic behavior of the system, and the
evaluation of the system’s performance in a distributed
deployment.

1. Introduction

Modern distributed systems often consist of a large
number of loosely coupled services that are deployed
over multiple machines and commute through mes-
sage passing networks. A common design pattern in
such systems is that of distributed producer/consumer,
where a large number of services produce a high vol-
ume of messages that are processed by another group
of services. A scalable, highly available, and persis-
tent message buffer that has the logical functionality
of a priority queue is crucial to the proper function of
these systems.

We have found that in many distributed systems that
need priority queues on their critical paths, the require-
ment for scalability often outweighs the requirement
for absolute priority ordering. An example would be a
scheduling system responsible for taking in tasks from
many users before scheduling them on many worker
nodes whenever they are available. For such a system,
a strict priority order would not offer much additional
value than a slightly relaxed one, since a large number

of items would be popped (scheduled onto) in quick
succession by many workers. The scalable relaxed dis-
tributed priority queue we present here is aimed for
such scenarios.

2. Related Work

The problem of scalable distributed priority queues
deployed over a loosely coupled environment has been
well studied. Many studies have tried to scale the sys-
tem horizontally by trying to coordinate a group of
symmetrical queue nodes each responsible for main-
taining part of the priority queue. One common ap-
proach is to use a global root node to load balance
and route read and write requests to a group of sub
nodes that are responsible for storing the queue entries
in sorted order [1]. While the root node is usually only
responsible for light weight tasks in such design, it can
still become the scalability bottleneck. A slight variant
of this approach is using an external distributed coor-
dination service such as Zookeeper in place of a root
node [2], the scalability of which is bounded by the
scalability of the coordination service instead.

Other designs try to address this problem by using
node to node asynchronous message passing to recon-
struct a partial view of global order in each node in-
stead. In QCID, each node is responsible for main-
taining part of a global graph that eventually points
towards the global top item of the priority queue [3].
In SEAP, this partial view comes in the form of an ag-
gregation tree [4].

Another approach popular in the industries is buck-
etizing the items into a fixed number of priority lev-
els and having separate nodes to serve each level [5].
While this approach avoids the bottleneck of the root
node and the need for peer to peer message passing, it
is much less scalable for read than for writes, since all
reads will go to the nodes serving the top bucket.

1



All the aforementioned designs aim to have a dis-
tributed priority queue that exhibits the exact same log-
ical behavior as a heap on a single node. However,
as explained before, in many distributed applications,
such strict requirements are not necessary. The relaxed
distributed priority queue presented here is inspired by
the idea that a small number of choices made based on
information from a limited number of nodes in a large
randomized system can lead to drastically different re-
sults [6]. The original study focuses on various load
balancing scenarios, in which examining as few as 2
random nodes before placement can significantly de-
crease the maximum possible load on any node with
high probability. We found this result to be potentially
applicable for the construction of a distributed priority
queue.

3. Design

The systems proposed in this paper is a distributed
priority queue that guarantees at-least-once semantics
with relaxed priority ordering. It is composed of a
cluster of nodes, with each one maintaining its own lo-
cal priority queue, or subqueue.1 The elements inside
the priority queue are called PQItems. The PQItem
is composed of a PQKey (containing a numeric pri-
ority and a unique uuid) and a byte array containing
arbitrary user data.

The PQItems are sorted in the priority queue based
on the numeric priority and the unique uuid, with the
uuid used to break ties between equal priority items.
Lower numeric value in the priority field represents
higher logical priority. PQItems with higher priority
are popped first.

The overall architecture of the system, along with
server client interactions, are depicted in Figure 1.
The following sections will explore each component
in more details.

3.1. Server Node

Each server node is composed of a Kafka topic (for
adding new elements and durably recovering after fail-
over) as well as a REST API server that supports the
following API calls:

• void add(long priority, byte[] data): Add an
1Due to the one to one mapping of nodes and subqueues, we

sometimes use them interchangeably in the subsequent sections.

Figure 1. Architecture diagram of the distributed priority
queue system. The client contacts one node for add, and
multiple nodes for pop

PQItem to the priority queue. Clients can produce
messages to a random node’s Kafka topic directly
(for performance), or hit the Rest API, which will
add the item to a random node’s Kafka topic.

• PQItem peek(): Returns the PQItem with the
highest priority.

• PQItem pop(): Returns + Removes the PQItem
with the highest priority.

• void commit(PQKey key): Commits the
PQItem, marking it as consumed. If the client
does not call commit() after pop(), the PQItem
will be placed back into the priority queue after a
timeout.

• void abort(PQKey key): Aborts the previously
popped PQItem. This adds the PQItem back into
the priority queue.

3.1.1 Durable Snapshots

In order to maintain durability in case of failover, each
Priority Queue Node performs periodic snapshots of
all of its contents along with the current Kafka Offset
at the start of the snapshot. The format of the snapshot
is shown in Table 1.

Snapshots can be performed asynchronously by it-
erating through the entire priority queue data struc-
ture. When iterating, the priority iterator must return
all the PQItems that existed when the iterator was con-
structed, but may or may not reflect subsequent inser-

2



〈 Kafka Offset 〉
〈 PQItem 1 Priority Number 〉
〈 PQItem 1 UUID 〉
〈 PQItem 1 Data Size 〉
〈 PQItem 1 Data 〉
〈 PQItem 2 Priority Number 〉
〈 PQItem 2 UUID 〉
〈 PQItem 2 Data Size 〉
〈 PQItem 2 Data 〉
· · ·

Table 1. Server node snapshot layout

tions and removals to the priority queue after the iter-
ator has been constructed.

Upon recovery, each node will load all the items
from the most recent completed snapshot file. After
this, it sets the Kafka Offset to the value indicated in
the snapshot file.

This mechanism guarantees at-least-once seman-
tics because any PQItem that has not been popped
+ committed since the start of the most recent snap-
shot will be in the snapshot file and all PQItems that
are newly added since then will be re-consumed from
Kafka. However, there may be some PQItems that are
popped + committed after the snapshot started but are
not reflected in the snapshot file. Clients might see
these popped + committed elements a second time dur-
ing failover, which is allowed by the at-least-once se-
mantics.

3.2. Client

The client library provides a high level API to the
system, which consists of add() and pop() operations.
Underneath, the client library will call corresponding
functions on a subset of the priority queue nodes.

When a client wants to add a new element to the
priority queue, it will produce a PQItem to a random
node’s Kafka topic.

When a client wants to pop an element, it will peek
at N different random nodes, and determine the pri-
ority queue with the highest priority PQItem. After
the client determines the highest priority PQItem, it
will then make a decision on which node to retrieve
the next item to process based on the results from the
peeks (the simplest policy being just pop from the node
that returns the item with highest priority during the

peek).The validity of this behavior is examined more
extensively in Section 4. In order to guarantee at-
least-once semantics, the client must then commit the
PQItem to indicate that it is done with that item. Other-
wise, the pop operation will be aborted after a timeout
and the PQItem will be placed back into the queue.

4. Simulation

The validity of our design depends on how well the
“peek n pop one” policy can approximate the behavior
of a strict priority queue (one that always returns the
top element), and thus before implementing the sys-
tem, we performed a number of simulations to evaluate
its correctness performance.

The main evaluation criteria used to measure the
correctness performance of the system is the distribu-
tion of the global index of the next element popped
from the priority queue. We will refer to this as the
PEI (Popped Element Index). For simplicity, we mea-
sure the PEI distribution through aggregated statistics
such as medium, average, or certain percentiles in our
simulation experiments.

Note that since the priority queue is distributed into
many different nodes, it is not possible to determine
the PQItem with the global minimum priority across
all nodes without querying every single node in the
cluster. Therefore, the goal of this system is to ap-
proximate this as much as possible (the global index
of the next element popped should be as close to 0 as
possible).

4.1. System Variables

During simulation, it was determined that the fol-
lowing variables affect the PEI:

• Number of priority queue nodes: The more
nodes, the more difficult it is to find the global
highest priority element.

• Consumer lag: This is the number of elements
remaining in the priority queue. If each client
adds one element and then pops one element, this
number remains constant for the simulation run.

• Number to peek before pop: This is the number
of nodes to peek before determining from which
node to pop.

3



Figure 2. PEI distribution for a 20 node relaxed distributed
priority queue

• Number to peek before add: This is an alterna-
tive idea we have explored during the simulation,
in which we have the clients trying to choose the
node at adding time instead of popping time.

Our subsequent simulation experiments are orga-
nized in a way to exam the effect on PEI distribution
by each of these variables.

4.2. Simulation Result Analysis

We first present a basic simulation, in which one
client adds 1 element (with priority being uniformly
distributed) and then pops 1 element from the prior-
ity queue in a loop. In this setup, the system has 20
priority queue nodes. The client performs 2 peeks be-
fore popping the node with highest priority, and has
a consumer lag of 10000. The purpose of this simu-
lation is to demonstrate (and verify) that even a very
rudimentary setup can have surprisingly good perfor-
mance. The full PEI distribution of this simulation is
presented in Figure 2 .From the figure, it is possible
to see, for example, that the 0th index element popped
first over 10% of the time.

For the next simulation, we examine the effect of
consumer lag on PEI distribution. Figure 3 shows the
average and median PEI as we vary the consumer lag
in a 20 node setup. In all cases, it is possible to see that
the PEI levelling out as the consumer lag increases,
which means performance does not significantly de-
grade as there are more elements in the priority queue.
Furthermore, it is possible to see that doing peek be-
fore pop performance much better than peek before
add (i.e. adding new element to the peeked queue with
the highest top priority). Because of this, in the rest

Figure 3. PEI(medium and average) variation as consumer
lag increases under different client strategies. Notice the the
much better performance of ”peek before pop” over ”peek
before add”, which itself is better than the ”no peek” base-
line.

of our experiments and the implementation, we only
perform ”peek before pop”.

Also shown in Figure 3, under the “peek before
pop” strategy, once we have a large number of ele-
ments with the distributed queue system, the PEI dis-
tribution becomes independent of the total number of
elements.

Empirically, we found that under large enough con-
sumer lag, the nth percentile of PEI values gener-
ally follows equation 1, where numsubqueue is the
total number of nodes/subqueues within the system,
numpeek is the total number of subqueues to query be-
fore the final pop, and fn is a function of numpeek for
the corresponding nth percentile value.

PEInthpercentile = numsubqueue ∗ fn(numpeek) (1)

The scaling of PEI with numsubqueue while hold-
ing numpeek constant can be seen in Figure 4, which
shows a remarkably linear scaling, especially consid-
ering the randomness introduced in the simulation.

To illustrate the relation of PEI and numpeek, we
ran another simulation with an 100 node setup. The
results are shown in Figure 5. The figure can also be
seen as a plot of fn(numpeek). As demonstrated in the
figure, checking even a very small number of nodes
makes it possible to achieve a reasonably low PEI
even at 90th percentile.

4.3. The Issue of Concurrent Operations

The simulations above assume that the n peeks and
one pop which constitute one complete client side pop

4



Figure 4. PEI variation as number of nodes/subqueues in-
creases. The number of peeks before popping is kept at
constant, and consumer lag is kept at a large number.

Figure 5. PEI variation as number of peeks before the pop
increases. The total number of queues are kept constant,
and consumer lag is kept at a large number.

operation are done on some global atomic snapshot of
all the subqueues involved. More specifically, it as-
sumes that if a certain element is returned upon the
peek on a particular subqueue, the same element would
be returned upon the pop on the same subqueue. How-
ever, this assumption is generally not true when we
have a large number of concurrent operations from
multiple clients. Imagine when client A and client B
both peek at subqueue Q, and then both decide to pop
from Q, only one of the clients is going to get the el-
ement it expects (i.e. no longer the top element from
Q). This would degrade the correctness of the system
(in terms of PEI distribution).

We perform the similar simulation as before with an
100 node set up, but allowing the peeks and pops from
different clients to interleave. The results are shown in
Figure 6. It can be seen that the system’s correctness
performance degrades as the number of concurrent re-
quests increases The effect is way more significant on
the 99th and 90th percentile of PEI, while much less
so on medium and average PEI.

There are a few potential methods to address this

Figure 6. PEI variation as the number of concurrent request
increases. In this simulation, the client peeks 10 queues be-
fore popping from the queue that returns the highest priority
upon the peek.

problem.

1. We can consider hiding the peeked elements by
one client from other clients during the time of its
operation. This would ensure that the popped el-
ement is the same as the one being peeked at, but
would also mean that the peeked element itself
might not be the top element in the subqueue, and
thus the correctness degradation shown in Figure
6 would still persist.

2. We can consider completely locking the sub-
queues involved in the operation of one client
from other clients. This eliminates the concur-
rency problem, but would severely limit the over-
all throughput of the system, and thus undermin-
ing the main advantage of a distributed priority
queue.

3. Upon the popping from the chosen subqueue,
check whether the item is expected, abort the cur-
rent pop if not so, and retry another peek and
pop loop. This approach avoids the problems of
the above two, but is not guaranteed to terminate
when concurrency levels are high.

The approach that we adopt, as shown below, is a
slight variation of approach 3.

(a) Peek n subqueues and try to pop from the one that
returns highest priority element.

(b) If the actual popped element’s priority is not
lower than the second highest priority item re-
trieved during the peek, commit the pop and re-
turn the element.

5



Figure 7. PEI variation as the number of concurrent request
increases, with more sophisticated client side policy.

(c) Otherwise pop and commit from the node that re-
turns the second highest priority item during the
peek.

Figure 7 shows the same simulation set up as in Fig-
ure 6, but with this new policy. It can be seen that the
PEI is cut in half for all percentile levels, at the poten-
tial cost of just one extra pop.

5. Implementation

The design described in Section 3 was im-
plemented in Java as a Spring Rest service.
The APIs were modeled as Rest endpoints, and
there is also a background thread in each Priority
Queue node that consumes from a dedicated Kafka
Topic. The implementation is available at https:
//github.com/bslin/distributed-pq/
tree/master/priorityqueue

6. Deployment & Evaluation

6.1. Pseudo-Distributed Deployment

The priority queue is first deployed and tested in
a 2 host setup. A 2016 MacBookPro and a 2015
MacBookPro are connected over a 5G Wifi network.
The 2016 MacbookPro is running a number of dif-
ferent Priority Queue Nodes in different processes.
The 2015 MacbookPro spawns a number of client pro-
cesses, with each one popping from the cluster of pri-
ority queue nodes.

The distributed priority queue cluster starts with
1000 elements (with priorities 0 through 999) and the
test is run until the client cannot find an element to pop
after peeking from 2 nodes.

Since all the clients are running on the same host,
it is possible, using system timestamps, to determine

Figure 8. Distributed priority queue performance with
pseudo-distributed deployment

the order these items are popped, which can then be
used to calculate PEI. In this test, we test how PEI
changes as we vary the number of concurrent clients
and the number of priority queue nodes. The figure
below summarizes the results for 3, 10, and 30 priority
queue node setup. The number of clients is varied (via
powers of 2) from 1 to 128.

From Figure 8, it is possible to see that as the num-
ber of queues increase and as the number of concur-
rent clients increases, the PEI also increases propor-
tionately. While this seemingly degrades performance
as we scale, we should note that as the number of
clients/server nodes increase, there will be more el-
ements processed (throughput), which means that it
is not as bad if a higher logical priority element gets
popped earlier.

6.2. Distributed Deployment on AWS

We have also deployed the system on a fleet of vir-
tual machines on Amazon Web Service to evaluate its
latency performance in a truly distributed setting.

We set up a cluster of five EC2 t3.xlarge VMs (4
vCPU, 16 GiB memory each) within the same avail-
ability zone and connected them to the same subnet to
host the system. Each VM is responsible for hosting
one subqueue of the distributed priority queue system,
including both the Java Spring server and the corre-
sponding single partition Kafka topic. The Zookeeper
ring for the Kafka brokers is hosted as a single node
setup on one of the five VMs, since it is not likely to
be a bottleneck of the system. For simplicity, we did
not set up a dedicated load balancer for the system.
Instead, the subnet IPs of the 5 VMs are hardcoded
in a configuration from which clients can randomly

6

https://github.com/bslin/distributed-pq/tree/master/priorityqueue
https://github.com/bslin/distributed-pq/tree/master/priorityqueue
https://github.com/bslin/distributed-pq/tree/master/priorityqueue


choose.
The clients ran in other VMs within the same sub-

net, using a basic strategy of peeking 2 nodes before
deciding where to pop from. We were able to run
4 concurrent clients from a single VM, each with a
tight pop()-commit() loop. They reached a total qps
of 340 without any errors, with a query latency of
12ms/13ms/17ms (medium / 90th percentile / 99th per-
centile). Further increase in number of concurrent
clients on a single VM do not further increase the total
qps, likely due to network constraints on a single VM
limiting the number of requests in flight. When clients
are deployed onto multiple VMs, we can achieve a to-
tal qps of over 600 qps without noticeable degradation
of latency.

7. Conclusion

This paper described the design, implementation
and deployment of a scalable and persistent relaxed
distributed priority queue. It demonstrated how a sim-
ple but elegant idea of random choices can be em-
ployed to build a system that provides sufficiently cor-
rect behavior for many applications while avoiding
the bottlenecks and complexities of more sophisticated
systems. The extensive simulation presented in this
paper provides the necessary guidance for parameter
tuning should such a system is deployed in produc-
tion, while the prototype implementation proves the
feasibility of the design.

References
[1] B. Mans, “Portable distributed priority queues with

mpi,” Concurrency, practice and experience, vol. 10,
no. 3, pp. 175–198, 1998.

[2] The Apache Software Foundation, “Distributed
priority queue,” Available at https://curator.apache.
org/curator-recipes/distributed-priority-queue.html
(2020/05/20).

[3] R. Bajpai, K. K. Dhara, and V. Krishnaswamy, “Qpid:
A distributed priority queue with item locality,” in 2008
IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications, 2008, pp. 215–
223.

[4] M. Feldmann and C. Scheideler, “Skeap & seap: scal-
able distributed priority queues for constant and arbi-
trary priorities,” in SPAA 19: The 31st ACM Symposium
on Parallelism in Algorithms and Architectures, 2019,
pp. 287–296.

[5] Microsoft Corporation, “Priority queue pattern,”
Available at https://docs.microsoft.com/en-us/azure/
architecture/patterns/priority-queue (2020/05/20).

[6] M. Mitzenmacher, A. Richa, and R. Sitaraman, “The
power of two random choices: A survey of techniques
and results,” Handbook of Randomized Computing,
vol. 1, pp. 255–312, 2001.

7

https://curator.apache.org/curator-recipes/distributed-priority-queue.html
https://curator.apache.org/curator-recipes/distributed-priority-queue.html
https://docs.microsoft.com/en-us/azure/architecture/patterns/priority-queue
https://docs.microsoft.com/en-us/azure/architecture/patterns/priority-queue

