
 Distributed SQLite - Replicated SQLite Service powered by Raft

 Arun Rajan, Ethan (Zhexin) Qiu, Esther (Cuiping) Fang, Purva Kamat

Abstract
SQLite is one of the most popular database
engines that have been installed on billions of
devices[1]. Although SQLite is lightweight &
consists of a rich set of features for portability
and performance, it does not come with
replication support out of the box. The
motivation of this project is to build a reliable,
distributed, relational datastore that leverages
the Raft algorithm[2] to realize replication,
consistency, and fault tolerance. In addition to
the distributed constructs like Leader Election,
Log replication we provide support for :
Dynamic cluster membership change, Snapshot
& Log Compaction, partial support for
Non-Deterministic functions, multi raft group
transaction support using 2 Phase Commit[4].
The final deliverable includes a distributed Raft
server implementation based on open source
project sofajraft[3], a REPL client for CLI
interactions, a visualization layer implemented
in Angular.js, a Spring Boot controller service to
orchestrate client-server requests and a
coordinator for 2 Phase commit orchestration.
The components are deployed through Docker
containers.

1. Introduction
SQLite is a popular choice for a relational
database engine that is widely used by several
widespread browsers, operating systems, and
embedded systems. Unlike most other SQL
databases, SQLite does not have a separate
server process. It is lightweight and contained in
a single disk file. However, it does not support
replication and thus does not provide fault
tolerance for the data nodes. We use the idea of
leveraging Raft algorithm to build a distributed
SQL database. In this paper, we would first

describe why we chose Raft in section 2. In
section 3, we discuss DSQLite in detail.
Furthermore, in section 4 we describe
comparison of this service with a similar project
- RQLITE[6] and the original SQLite. Finally,
we conclude with the discussion on limitations,
future work and our learnings from this project.

2. Raft
In this section, we briefly describe the Raft
consensus protocol and the SOFAJRaft library
we leveraged to build the feature-rich distributed
SQLite service.

2.1 Raft consensus protocol
The Raft consensus protocol is equivalent to
multi-Paxos but with understandability as its
prime goal in design. As a result, this is an ideal
candidate to serve as the foundational algorithm
to enhance the fault tolerance and scalability of
the original SQLite implementation given the
project time constraints. The central properties
of the Raft consensus protocol is a strong leader
and leader election[2]. Our service strictly
follows this design to realize the serializability
and consistency of the database read/write
operations.

2.2 SOFAJRaft
The open source project SOFAJRaft is
developed by Ant Financial Services Group as a
library to enable building distributed
applications on top of Raft. We leverage the
stability and abstraction provided by the library
to focus on the realization of a distributed
version of SQLite with a rich set of features.

3. Distributed SQlite Service
In this section, we discuss the architecture &
implementation details of our distributed SQLite
service and various supported features.

3.1 Architecture
The DSQLite service supports horizontal scale
out architecture. A user can add/remove nodes -
where each node means a Raft server handling
its own state machine - a SQLite database. To
provide ease of use, we have provided a GUI.
The GUI client talks to the DSQLite cluster
through a middleware - a Rest Controller. This
controller handles REST requests and converts
them into RPC requests for the DSQLite Leader.
From a developer friendly perspective, we have
also provided a CLI tool that directly connects
with the DSQLite leader using RPCs. Please see
Figure 1 for more information.

 Figure 1 - Architecture of DSQlite service

3.2 Read Requests
Although each node can service a read request,
our implementation sends all the requests to the
leader. Even at the leader, if we execute read at
its own state machine, we run the risk of
returning stale data as there could be a new
leader due to network partition. To avoid this
problem, one way is to treat each read request as

a write request. However, this introduces a new
problem - reads become expensive. To
overcome this problem, one optimization that
SOFAJRaft library provides is as follows[3]:

● The leader records the commitIndex of
its current log into a local variable
readIndex.

● It sends heartbeat messages to the
followers.

● It waits for its state machine to execute
so that applyIndex exceeds readIndex.

● It executes the read request and returns
results to the client.

We, however, provide support for multiple read
modes, ‘Local’ or ‘Strong’. If a client chooses to
accept potential stale entries, it can provide
‘Local’ as read consistency level in the request.
By default, we use ‘Strong’.

3.3. Update Requests
All SQL requests that can potentially change the
state of the SQLite database are considered
update requests. Such update requests follow the
path of usual Raft log replication. The leader
receives the request and propagates it to all the
followers and every node applies it to its own
state machine - SQLite database.

3.4 Nondeterministic Function Handling
An SQL statement is considered to be
nondeterministic if it returns different results
even with the same input values. We partially
support some of the nondeterministic functions
like date(), datetime(), time(), Julianday(),
random(), order by random(). We evaluate non
deterministic functions locally at the leader and
replace the nondeterministic functions with
evaluated values and broadcast the processed
query from the leader. We have special handling
for order by random. We find the table that we
need to sort by regular expression and find the
total number of rows in that table. We assign a
random number (need to be smaller than the
total number of the rows in that table) to each of
the rows and order each row using the random
value.

3.5 Snapshot and Log Compaction
Realistic systems are always resource bound in
terms of storage. For a log replication system
implemented in Raft, there is a physical limit for
how many logs a single server can persist. Even
though storage is becoming progressively
cheaper in the modern era, servers in a replicated
state machine system still need to consume
excessive computing power in order to process
complex queries during log replaying.
Snapshotting is a simple approach suggested by
the Raft paper to allow log compaction and
reduce the need for excessive log replays[2].
This will reduce the time for initializing
rebooted nodes or configuring new nodes. The
general idea is to take a snapshot of the current
system state and write into stable storage such
that the entire log up to that point can be
discarded from the system.

In our distributed SQLite service
implementation, each individual SQLite Raft
node has a periodically running snapshot
executor service to manage the snapshots stored
on the system. A separate log manager process
will monitor the snapshot progress in the system
and clean up logs that are no longer needed. The
doSnapshot(...) method in SnapshotExecutor
service will decide whether to take a snapshot
based a set of preconditions (e.g. if the server
stopped, is the server loading another snapshot
file, is the current state machine already synched
with the last applied log index). When a new
DSQLite node is added to the Raft cluster, the
leader will send the latest snapshot to the new
follower and a InstallSnapshot event will be
triggered. The new node will initialize its state
machine and the leader node will keep sending
AppendEntries requests that contain logs after
the log index that is captured in the snapshot.

One improvement we did is to leverage the
natural property of the SQLite (or any database
management engine) which already stores the
state machine state in stable storage. Instead of
creating actual snapshots, we just created a soft
link to the already existing SQLite database
files. This avoids the need for duplication and

significantly improves the time for snapshot
creation and deletion. Refer to Figure 2 for more
information.

 Figure 2 - Snapshot and log compaction

3.6 Distributed transaction between raft
clusters
Distributed SQLite also supports distributed
transactions between databases in different raft
groups. The distributed transaction is performed
using Two Phase commit (2PC) protocol[5].
ACID property is guaranteed during the
distributed transaction.

3.6.1 Implementation of Two phase
commit in Distributed SQLite
It follows the basic algorithm of two phase
commit protocol which has two phases. We have
implemented a Coordinator to receive
distributed transaction requests from clients and
coordinate transactions between different
distributed sqlite databases managed by different
raft groups.

Below we describe a typical workflow of a
distributed transaction initiated by a client.

1. Distributed sqlite clients enter the Raft
group id involved in the distributed
transaction and the corresponding sql
commands for each Raft group. It will
create a Distributed Transaction request
and the request will be sent to the
coordinator.

2. The coordinator will send a PREPARE
message to the leaders of Raft groups
involved in the transaction. By using
Raft, the sql commands received by the
leader will be replicated by all followers
in the group.

3. After sending VOTE requests to
participants.

a. The coordinator records this
transaction into the local log.

b. Upon receiving a PREPARE
request from coordinator, all
participants will record it and
execute the SQL queries in the
state machine without
committing in the database. If it
fails, the participant will
respond No to the coordinator,
otherwise it will return Yes.
And participants will record the
vote result in the local log.

4. After receiving votes from participants,
The coordinator will decide the outcome
and send it to participants and record
this in the local log.

5. Upon receiving a Decision, participants
will commit or abort the transaction
accordingly and record the outcome in
the log.

6. Once the coordinator reaches a decision,
it will reply to the client with the
outcome of distributed transaction
(COMMIT or ABORT)

. Figure 2 - Architecture of multi raft txn
support

3.6.2 Fault tolerance

In case of machine failure, the coordinator and
participants use local log
(LogRecordRepository) to recover all the
unfinished transactions. LogRecordRepository
stores all the transaction information.

If a participant votes ‘Yes’ and crashes after
sending ‘Yes’ to the coordinator, it is highly
likely that a leader election would have
happened before the server recovers from the
crash. Because of the consistency guarantee of
the Raft consensus, the next leader is guaranteed
to know PREPARE operation. The next leader
has to check the local LogRecordRepository for
any transaction not in final state (not in Abort or
Commit). If the participant votes ‘No’ for the
transaction then it can safely record the decision
as Abort, otherwise it needs to contact the
coordinator to get the final decision of the
transaction and apply it on its state machine. If
the coordinator fails, participants will abort any
transactions that are not in final state.

4. Benchmark and Performance
We performed benchmarking against Rqlite and
SQLite. Rqlite is also a replicated sqlite
database[6] built using Raft.

We have included our benchmark datasets and
commands to perform testing in the git
repository. The tests that compare with Rqlite
and perform distributed transactions were done
locally on a personal machine with 16 GB
memory & 3.1 GHz Intel Core i7 processor. The
comparison with SQLite was performed on a
personal machine with 8 GB memory & 1.6
GHz processor.

4.1 Comparing DSQLite with Rqlite
The cluster size for rqlite and distributed sqlite
(DSQlite) is 3 and all the nodes run on the single
host.

4.1.1 Write Test
CREATE TABLE bar (id INTEGER NOT NULL
PRIMARY KEY,name TEXT);
For i in range (0, 1500)

Insert Into bar(name) VALUES(“Fiona" +
str(i) + ");

We observe that Distributed SQLite outperforms
Rqlite in terms of speed of handling write
requests. We believe the difference in time is
mainly caused by optimization done in the
underlying raft library that we used[2].

4.1.2 Strong Read Test
For i in range(0, 2000):

select * from foo where id like \"fiona" +
str(i) + "\"

From the graph, we observe Distributed SQLite
is twice faster than Rqlite. The reason is that we
used read index optimization which is offered by
SofaJraft.

4.2 Comparing DSQLite with SQLite
A single instance of SQLite DB was
compared against a 3 node distributed sqlite
(DSQlite).

4.2.1 Write Test
CREATE TABLE Employee (ID numeric,
FIRST_NAME text, LAST_NAME text, STATE
text, DATE_OF_BIRTH text)

INSERT INTO Employee (ID, FIRST_NAME,
LAST_NAME, STATE, DATE_OF_BIRTH)
VALUES
(87098,'Valrie','Gormley','CO','02/28/2005')

Numb
er of
Recor

ds

10 50 100 500 1000 1500

SQL
ite

0.000
6

0.001
9

0.002
9

0.018
6

0.046
4

0.081
2

DSQ
Lite

0.772
4

4.004
6

7.758
33.71

03
64.97

13
95.11

53

4.3 Comparing Strong Read and Weak
Read in Distributed SQLite

From the graph we observed that Weak Read is
relatively faster than Strong Read as it does not
need to go through the regular Raft log
replication process.

4.4 Distributed Transaction Test

number
of nodes

1 2 3

Time (in
seconds)

0.059547
699

0.40519
0655

0.458951
374

We can tell from the graph that as the number of
the nodes involved in the transaction increases ,
the runtime of transactions would increase as
well. However, it is not a linear relationship,
because all the rpc calls from coordinator to
participants are sent in parallel. The runtime
would also increase if the queries that involve
the transactions are complicated and take more

time to prepare or the geo distance from the
coordinator to participants increases.

5. Future work
Although Distributed SQLite was built with
fault tolerance and consistency in mind, the
performance is not the primary goal for the
project. In the future, we would like to adopt
some optimization techniques to improve the
DSQLite service’s overall latency and
throughput for handling database operation
requests.

One common technique is to apply sharding in
the system. There are various ways to manage
shards in a distributed system: 1. Hash-based
sharding where a consistent hashing function is
used to designate a hash key (which corresponds
to a certain node) for each shard. 2. Range-based
sharding divides data based on ranges of
keyspace. 3. Geo-based sharding partitions data
according to a user specified column that maps
range of shrads to specific regions[7]. In the
context of our DSQLite service, we could
provide an optional sharding parameter that can
be specified by the client to shard based on a
certain column. Different shards will be assigned
to different Raft server groups so we could
improve performance by spread loads across the
groups and still tolerate failures.

Another optimization is to introduce a caching
layer or fine tune the SQLite cache
configurations in order to improve the system’s
performance. For example, if a client issues a
request with some ID and reissue the same
request before the first request finishes, we start
a new request. If we cache the incoming request
ID, this problem can be avoided. From the GUI
client, we currently support one SQL query at a
time, this could be improved as well.

6. Conclusion
Distributed SQLite service is a fault-tolerant,
consistent, replicated database service built on
top of Raft and SQLite to support common SQL
query operations and partially support
nondeterministic functions. The service can be

easily deployed in a containerized environment
by a python script which later can be generalized
to be deployed on network configured on-prem
or cloud infrastructures. [8]

7. Acknowledgement
We would like to express our gratitude to the
cs244b course staff David and Jim for providing
constructive suggestions and feedback for our
project and hosting inspiring talks throughout
the quarter. It’s a fruitful journey and we learned
a lot about distributed systems.

REFERENCE
[1] Most Widely Deployed SQL Database
Engine. Accessed April 25, 2020.
https://www.sqlite.org/mostdeployed.html.
[2] Ongaro, Diego, and John Ousterhout. "In
search of an understandable consensus
algorithm." In 2014 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 14), pp.
305-319. 2014.
[3] “Distributed Consensus - Raft and JRaft.”
Distributed consensus - Raft and JRaft ·
SOFAStack,n.d.
https://www.sofastack.tech/en/projects/sofa-jraft
/consistency-raft-jraft/.
[4] Lampson, Butler, and David B. Lomet. "A
new presumed commit optimization for two
phase commit." In VLDB, vol. 93, pp. 630-640.
1993.
[5] O'Toole , Philip. “Rqlite/Rqlite.” GitHub,
February 27, 2020.
https://github.com/rqlite/rqlite/blob/master/DOC
/CONSISTENCY.md.
[6] O'Toole, Philip. “Philip O'Toole.” Vallified,
May 13, 2020. http://rqlite.com/.
[7] Choudhury, Sid. “How Data Sharding Works
in a Distributed SQL Database.” The Distributed
SQL Blog, June 6, 2019.
https://blog.yugabyte.com/how-data-sharding-w
orks-in-a-distributed-sql-database/.
[8] Rajan, Arun, Esther(CUIPING) FANG,
Ethan(Zhexin) QIU, and Purva Kamat.
“cs_244b_2020_team7 / Distributed_Sqlite.”
GitLab. Accessed April 25, 2020.
https://gitlab.com/cs_244b_2020_team7/distribu
ted_sqlite.

