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Abstract 
SQLite is one of the most popular database        
engines that have been installed on billions of        
devices[1]. Although SQLite is lightweight &      
consists of a rich set of features for portability         
and performance, it does not come with       
replication support out of the box. The       
motivation of this project is to build a reliable,         
distributed, relational datastore that leverages     
the Raft algorithm[2] to realize replication,      
consistency, and fault tolerance. In addition to       
the distributed constructs like Leader Election,      
Log replication we provide support for :       
Dynamic cluster membership change, Snapshot     
& Log Compaction, partial support for      
Non-Deterministic functions, multi raft group     
transaction support using 2 Phase Commit[4].      
The final deliverable includes a distributed Raft       
server implementation based on open source      
project sofajraft[3], a REPL client for CLI       
interactions, a visualization layer implemented     
in Angular.js, a Spring Boot controller service to        
orchestrate client-server requests and a     
coordinator for 2 Phase commit orchestration.      
The components are deployed through Docker      
containers.  
 
1. Introduction 
SQLite is a popular choice for a relational        
database engine that is widely used by several        
widespread browsers, operating systems, and     
embedded systems. Unlike most other SQL      
databases, SQLite does not have a separate       
server process. It is lightweight and contained in        
a single disk file. However, it does not support         
replication and thus does not provide fault       
tolerance for the data nodes. We use the idea of          
leveraging Raft algorithm to build a distributed       
SQL database. In this paper, we would first        

describe why we chose Raft in section 2. In         
section 3, we discuss DSQLite in detail.       
Furthermore, in section 4 we describe      
comparison of this service with a similar project        
- RQLITE[6] and the original SQLite. Finally,       
we conclude with the discussion on limitations,       
future work and our learnings from this project. 
 
2. Raft 
In this section, we briefly describe the Raft        
consensus protocol and the SOFAJRaft library      
we leveraged to build the feature-rich distributed       
SQLite service. 
 
2.1 Raft consensus protocol 
The Raft consensus protocol is equivalent to       
multi-Paxos but with understandability as its      
prime goal in design. As a result, this is an ideal           
candidate to serve as the foundational algorithm       
to enhance the fault tolerance and scalability of        
the original SQLite implementation given the      
project time constraints. The central properties      
of the Raft consensus protocol is a strong leader         
and leader election[2]. Our service strictly      
follows this design to realize the serializability       
and consistency of the database read/write      
operations. 
 
2.2 SOFAJRaft 
The open source project SOFAJRaft is      
developed by Ant Financial Services Group as a        
library to enable building distributed     
applications on top of Raft. We leverage the        
stability and abstraction provided by the library       
to focus on the realization of a distributed        
version of SQLite with a rich set of features. 
 
 



 
 
3. Distributed SQlite Service 
In this section, we discuss the architecture &        
implementation details of our distributed SQLite      
service and various supported features. 
 
3.1 Architecture  
The DSQLite service supports horizontal scale      
out architecture. A user can add/remove nodes -        
where each node means a Raft server handling        
its own state machine - a SQLite database. To         
provide ease of use, we have provided a GUI.         
The GUI client talks to the DSQLite cluster        
through a middleware - a Rest Controller. This        
controller handles REST requests and converts      
them into RPC requests for the DSQLite Leader.        
From a developer friendly perspective, we have       
also provided a CLI tool that directly connects        
with the DSQLite leader using RPCs. Please see        
Figure 1 for more information. 

 
 
        Figure 1 - Architecture of DSQlite service  
 
3.2 Read Requests 
Although each node can service a read request,        
our implementation sends all the requests to the        
leader. Even at the leader, if we execute read at          
its own state machine, we run the risk of         
returning stale data as there could be a new         
leader due to network partition. To avoid this        
problem, one way is to treat each read request as          

a write request. However, this introduces a new        
problem - reads become expensive. To      
overcome this problem, one optimization that      
SOFAJRaft library provides is as follows[3]: 

● The leader records the commitIndex of      
its current log into a local variable       
readIndex. 

● It sends heartbeat messages to the      
followers. 

● It waits for its state machine to execute        
so that applyIndex exceeds readIndex. 

● It executes the read request and returns       
results to the client. 

 
We, however, provide support for multiple read       
modes, ‘Local’ or ‘Strong’. If a client chooses to         
accept potential stale entries, it can provide       
‘Local’ as read consistency level in the request.        
By default, we use ‘Strong’.  
 
3.3. Update Requests 
All SQL requests that can potentially change the        
state of the SQLite database are considered       
update requests. Such update requests follow the       
path of usual Raft log replication. The leader        
receives the request and propagates it to all the         
followers and every node applies it to its own         
state machine - SQLite database.  
 
3.4  Nondeterministic Function Handling 
An SQL statement is considered to be       
nondeterministic if it returns different results      
even with the same input values. We partially        
support some of the nondeterministic functions      
like date(), datetime(), time(), Julianday(),     
random(), order by random(). We evaluate non       
deterministic functions locally at the leader and       
replace the nondeterministic functions with     
evaluated values and broadcast the processed      
query from the leader. We have special handling        
for order by random. We find the table that we          
need to sort by regular expression and find the         
total number of rows in that table. We assign a          
random number (need to be smaller than the        
total number of the rows in that table) to each of           
the rows and order each row using the random         
value. 
 



3.5  Snapshot and Log Compaction 
Realistic systems are always resource bound in       
terms of storage. For a log replication system        
implemented in Raft, there is a physical limit for         
how many logs a single server can persist. Even         
though storage is becoming progressively     
cheaper in the modern era, servers in a replicated         
state machine system still need to consume       
excessive computing power in order to process       
complex queries during log replaying.     
Snapshotting is a simple approach suggested by       
the Raft paper to allow log compaction and        
reduce the need for excessive log replays[2].       
This will reduce the time for initializing       
rebooted nodes or configuring new nodes. The       
general idea is to take a snapshot of the current          
system state and write into stable storage such        
that the entire log up to that point can be          
discarded from the system. 
 
In our distributed SQLite service     
implementation, each individual SQLite Raft     
node has a periodically running snapshot      
executor service to manage the snapshots stored       
on the system. A separate log manager process        
will monitor the snapshot progress in the system        
and clean up logs that are no longer needed. The          
doSnapshot(...) method in SnapshotExecutor    
service will decide whether to take a snapshot        
based a set of preconditions (e.g. if the server         
stopped, is the server loading another snapshot       
file, is the current state machine already synched        
with the last applied log index). When a new         
DSQLite node is added to the Raft cluster, the         
leader will send the latest snapshot to the new         
follower and a InstallSnapshot event will be       
triggered. The new node will initialize its state        
machine and the leader node will keep sending        
AppendEntries requests that contain logs after      
the log index that is captured in the snapshot. 
 
One improvement we did is to leverage the        
natural property of the SQLite (or any database        
management engine) which already stores the      
state machine state in stable storage. Instead of        
creating actual snapshots, we just created a soft        
link to the already existing SQLite database       
files. This avoids the need for duplication and        

significantly improves the time for snapshot      
creation and deletion. Refer to Figure 2 for more         
information. 

 Figure 2 - Snapshot and log compaction 
 

3.6 Distributed transaction between raft     
clusters 
Distributed SQLite also supports distributed     
transactions between databases in different raft      
groups. The distributed transaction is performed      
using Two Phase commit (2PC) protocol[5].      
ACID property is guaranteed during the      
distributed transaction. 
 
3.6.1 Implementation of Two phase     
commit in Distributed SQLite 
It follows the basic algorithm of two phase        
commit protocol which has two phases. We have        
implemented a Coordinator to receive     
distributed transaction requests from clients and      
coordinate transactions between different    
distributed sqlite databases managed by different      
raft groups. 
 
Below we describe a typical workflow of a        
distributed transaction initiated by a client.  
 

1. Distributed sqlite clients enter the Raft      
group id involved in the distributed      
transaction and the corresponding sql     
commands for each Raft group. It will       
create a Distributed Transaction request     
and the request will be sent to the        
coordinator. 



2. The coordinator will send a PREPARE      
message to the leaders of Raft groups       
involved in the transaction. By using      
Raft, the sql commands received by the       
leader will be replicated by all followers       
in the group. 

3. After sending VOTE requests to     
participants. 

a. The coordinator records this    
transaction into the local log. 

b. Upon receiving a PREPARE    
request from coordinator, all    
participants will record it and     
execute the SQL queries in the      
state machine without   
committing in the database. If it      
fails, the participant will    
respond No to the coordinator,     
otherwise it will return Yes.     
And participants will record the     
vote result in the local log. 

4. After receiving votes from participants,     
The coordinator will decide the outcome      
and send it to participants and record       
this in the local log.  

5. Upon receiving a Decision, participants     
will commit or abort the transaction      
accordingly and record the outcome in      
the log. 

6. Once the coordinator reaches a decision,      
it will reply to the client with the        
outcome of distributed transaction    
(COMMIT or ABORT) 

 
. Figure 2 - Architecture of multi raft txn          
support 
 
3.6.2 Fault tolerance 

In case of machine failure, the coordinator and        
participants use local log    
(LogRecordRepository) to recover all the     
unfinished transactions. LogRecordRepository   
stores all the transaction information. 
 
If a participant votes ‘Yes’ and crashes after        
sending ‘Yes’ to the coordinator, it is highly        
likely that a leader election would have       
happened before the server recovers from the       
crash. Because of the consistency guarantee of       
the Raft consensus, the next leader is guaranteed        
to know PREPARE operation. The next leader       
has to check the local LogRecordRepository for       
any transaction not in final state ( not in Abort or           
Commit). If the participant votes ‘No’ for the        
transaction then it can safely record the decision        
as Abort, otherwise it needs to contact the        
coordinator to get the final decision of the        
transaction and apply it on its state machine. If         
the coordinator fails, participants will abort any       
transactions that are not in final state. 
 
4. Benchmark and Performance 
We performed benchmarking against Rqlite and      
SQLite. Rqlite is also a replicated sqlite       
database[6] built using Raft.  
 
We have included our benchmark datasets and       
commands to perform testing in the git       
repository. The tests that compare with Rqlite       
and perform distributed transactions were done      
locally on a personal machine with 16 GB        
memory & 3.1 GHz Intel Core i7 processor. The         
comparison with SQLite was performed on a       
personal machine with 8 GB memory & 1.6        
GHz processor. 
 
4.1 Comparing DSQLite with Rqlite 
The cluster size for rqlite and distributed sqlite        
(DSQlite) is 3 and all the nodes run on the single           
host. 
 
4.1.1 Write Test 
CREATE TABLE bar (id INTEGER NOT NULL       
PRIMARY KEY,name TEXT); 
For i in range (0, 1500) 



Insert Into bar(name) VALUES(“Fiona" +     
str(i) + "); 

  
We observe that Distributed SQLite outperforms      
Rqlite in terms of speed of handling write        
requests. We believe the difference in time is        
mainly caused by optimization done in the       
underlying raft library that we used[2]. 
 
4.1.2 Strong Read Test 
For i in range(0, 2000): 

select * from foo where id like \"fiona" +         
str(i) + "\" 

 
 
From the graph, we observe Distributed SQLite       
is twice faster than Rqlite. The reason is that we          
used read index optimization which is offered by        
SofaJraft. 
 
4.2 Comparing DSQLite with SQLite 
A single instance of SQLite DB was       
compared against a 3 node distributed sqlite       
(DSQlite). 
 
4.2.1 Write Test 
CREATE TABLE Employee (ID numeric,     
FIRST_NAME text, LAST_NAME text, STATE     
text, DATE_OF_BIRTH text) 
 

INSERT INTO Employee (ID, FIRST_NAME,     
LAST_NAME, STATE, DATE_OF_BIRTH)   
VALUES 
(87098,'Valrie','Gormley','CO','02/28/2005') 
 

Numb
er of 
Recor

ds 

10 50 100 500 1000 1500 

SQL
ite 

0.000
6 

0.001
9 

0.002
9 

0.018
6 

0.046
4 

0.081
2 

DSQ
Lite 

0.772
4 

4.004
6 

7.758 
33.71

03 
64.97

13 
95.11

53 

 
4.3 Comparing Strong Read and Weak      
Read in Distributed SQLite 

 
From the graph we observed that Weak Read is         
relatively faster than Strong Read as it does not         
need to go through the regular Raft log        
replication process. 
 
4.4 Distributed Transaction Test 
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We can tell from the graph that as the number of           
the nodes involved in the transaction increases ,        
the runtime of transactions would increase as       
well. However, it is not a linear relationship,        
because all the rpc calls from coordinator to        
participants are sent in parallel. The runtime       
would also increase if the queries that involve        
the transactions are complicated and take more       



time to prepare or the geo distance from the         
coordinator to participants increases.  
 
5. Future work 
Although Distributed SQLite was built with      
fault tolerance and consistency in mind, the       
performance is not the primary goal for the        
project. In the future, we would like to adopt         
some optimization techniques to improve the      
DSQLite service’s overall latency and     
throughput for handling database operation     
requests. 
 
One common technique is to apply sharding in        
the system. There are various ways to manage        
shards in a distributed system: 1. Hash-based       
sharding where a consistent hashing function is       
used to designate a hash key (which corresponds        
to a certain node) for each shard. 2. Range-based         
sharding divides data based on ranges of       
keyspace. 3. Geo-based sharding partitions data      
according to a user specified column that maps        
range of shrads to specific regions[7]. In the        
context of our DSQLite service, we could       
provide an optional sharding parameter that can       
be specified by the client to shard based on a          
certain column. Different shards will be assigned       
to different Raft server groups so we could        
improve performance by spread loads across the       
groups and still tolerate failures. 
 
Another optimization is to introduce a caching       
layer or fine tune the SQLite cache       
configurations in order to improve the system’s       
performance. For example, if a client issues a        
request with some ID and reissue the same        
request before the first request finishes, we start        
a new request. If we cache the incoming request         
ID, this problem can be avoided. From the GUI         
client, we currently support one SQL query at a         
time, this could be improved as well. 
 
6. Conclusion 
Distributed SQLite service is a fault-tolerant,      
consistent, replicated database service built on      
top of Raft and SQLite to support common SQL         
query operations and partially support     
nondeterministic functions. The service can be      

easily deployed in a containerized environment      
by a python script which later can be generalized         
to be deployed on network configured on-prem       
or cloud infrastructures. [8] 
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