
EnsembleSync:
Reliable Distributed SGD with Less Communication

Michael Xie, Michihiro Yasunaga

Abstract

Traditionally, distributed large scale training of neural networks splits data
across workers. Every step of training requires communicating model
parameters to and from a central parameter server, which may be very
expensive for modern models. Our insight is that in machine learning, we can
relax the conditions for consensus. Different parameters can be reconciled by
ensembling rather than requiring a majority to agree on a value. Specifically,
we consider EnsembleSync, a synchronous distributed training algorithm
where each worker computes T steps of local training before sending updates
to the parameter server, which then reconciles the updates by ensembling
(averaging) the parameters. To avoid being bottlenecked by slow/faulty
workers during synchronization, we dynamically reallocate more compute
(GPUs) for a slower worker under a fixed budget. We ensure progress even
with faults on up toM−1 workers by reallocating resources when workers
fail. On top of computation and reliability gains, EnsembleSync increases
the model performance with respect to base distributed training algorithms.

1 Introduction
Modern machine learning algorithms require an ever-increasing amount of training data and
model parameters. For instance, ImageNet [2], a standard image recognition dataset, consists
of 14 million web images (154 GB). ResNet [3], a widely-used neural network model for image
classification, has 70 million parameters (244 MB). To scale to bigger datasets and models, re-
cent works have explored distributing the training workload across multiple machines [8, 1, 7].

The typical distributed machine learning setup considers data parallelism, which parallelizes
across the dataset (Figure 1) [1]. The training data is split into M shards and distributed
acrossM workers. These workers compute model updates using their data shard and model.
These updates are communicated to a central parameter server, which aggregates the updates.
Before computing a new update, the workers pull the updated parameters from the server.

Distributed model training has two major challenges. First, existing training methods such
as synchronous/asynchronous stochastic gradient descent (SGD) [8, 1] communicate model
parameters with the server in every step of gradient descent so that all workers share the
latest copies of parameters. However, as the model becomes more complex and requires
more parameters, this communication becomes prohibitively expensive. Second, while
synchronous algorithms linearize the gradient updates and are more principled, progress may
stall when waiting for slow workers or faulty (dead) workers during synchronization.

We introduce EnsembleSync, a synchronous distributed SGD algorithm that reduces commu-
nication and is robust to slow and faulty workers. To reduce communication, EnsembleSync
workers compute T steps of local training instead of a single step before sending updates to
the parameter server. The parameter server reconciles the different parameters by ensembling,
which computes a function (e.g. average) of the parameter versions rather than requiring
a majority of the workers to agree on a single value (as in standard consensus algorithms



Worker 1
1. Pull from server
2. Run training

(Sync/Async SGD: 1 step)
EnsembleSync: T steps

3. Push to server
(Sync/Async SGD: gradient)
EnsembleSync: parameterParameter Server

4. Update parameters
(Sync/Async SGD: add gradient)
EnsembleSync: average param

Updates

Parameters

Updates

Parameters

Data split 1

Data split M

Worker 1
1. Pull from server
2. Run training

(Sync/Async SGD: 1 step)
EnsembleSync: T steps

3. Push to server
(Sync/Async SGD: gradient)
EnsembleSync: parameter

Figure 1: Distributed stochastic gradient descent (SGD) with data parallelism. Typical
distributed SGD algorithms require communicating the model parameters between the
parameter server and the workers in every training step, which is expensive for large models.
EnsembleSync workers compute T steps of local training before sending updates to the
parameter server, reducing total communication by a factor of T .

[5, 6]). This reduces the amount of communication to 1/T of the existing distributed training
algorithms, while maintaining or even improving the accuracy of the trained model from regu-
larization effects of ensembling. To ensure progress in the presence of slow or faulty workers,
we dynamically reallocate more compute resources (GPUs) for slower workers under a fixed
budget. To tolerate up toM−1 faulty workers, we redistribute the data splits (and compute
resources) from dead workers to alive workers, sacrificing some parallelism for progress.

We evaluate the efficacy of our distributed training algorithm by using the ResNet-10 model [3]
and the CIFAR10 image classification dataset [4]. In normal execution, EnsembleSync
achieves better classification accuracy (84.29%) than synchronous and asynchronous SGD
(83.19% and 82.96% respectively) while completing 100 epochs of training 6.6 times faster
with 2 workers. With faulty workers, EnsembleSync continues to make progress while ensuring
that the workers are synchronized, whereas workers in other algorithms either fall behind
(asynchronous SGD) or must wait for dead workers to recover (synchronous SGD). With slow
workers, EnsembleSync reallocates GPU resources to slow nodes according to their current
computation speed, adjusting for differences in GPU speed and random network delays.

2 Preliminaries

In this section, we briefly describe distributed SGD algorithms. Comprehensive surveys
of distributed machine learning are provided in [9]. In this work, we focus on the setting of
centralized distributed training, where a central parameter server manages the de facto version
of the model parameters, with data parallelism, which distributes computation across splits
of a large dataset. The two most widely used algorithms in this setting are synchronous SGD
(Sync SGD) and asynchronous SGD (Async SGD).

Distributed SGD algorithms. We describe the general framework shared by both Sync
and Async SGD. Given a dataset {(xi,yi)}Ni=1, a model f with parameters W , and a loss
L(y,f(x;W )), the objective of model training is to find

W ?=argmin
W

∑N
i=1L(yi,f(xi;W )). (1)

To optimize the parameters, stochastic gradient descent (SGD) iteratively updates the
parametersWt at timestep t via

W (t+1)=W (t)+α∆W, where ∆W =−∇W (t)L(yi,f(xi;W
(t)) (2)

and α is the learning rate. Figure 1 illustrates SGD in the distributed setting. Each worker
j∈{1,...,M} first pulls the current parameterW from the parameter server (step 1), performs
SGD locally on its own shard of data (step 2), and then push the parameter update ∆Wj to the
server (step 3). Finally, the parameter server updates its parameter by adding ∆Wj (step 4).

2



Sync SGD. In synchronous SGD [1], the parameter server waits until every worker j
finishes a step of SGD and reports to the server. Then the parameter server updates its
parameters by summing all the ∆Wj ,

W (t+1)=W (t)+λ
∑M

j=1∆Wj , (3)

where λ is our learning rate, and can be scaled to account for updates across multiple machines.
We consider the beginning of training step i to start when a worker at training step i pulls
the current parameters from the parameter server. The training step ends when all workers
have reported their updates and the parameter server updates the parameters. In synchronous
SGD, the beginning and end of each step are fully linearized.

Async SGD. In asynchronous SGD [8], on the other hand, the parameter server adds ∆Wj
to the parameter on the fly as soon as receiving it from a worker j. This removes any locking
and synchronization from the implementation, improving the computation speed. Thus, the
beginning and end of each training step are not linearized, resulting in the possibility of a
worker computing updates ∆W with respect to “stale” parameters from a previous step. This
can cause a (small) drop in performance with the speed improvement [8].

3 Our Approach: EnsembleSync
3.1 EnsembleSync algorithm
We introduce EnsembleSync, a distributed SGD algorithm that only requires synchronization
every T steps and adaptively reallocates resources to tolerate straggling or failed workers.
The high-level steps (without resource reallocation) are as follows:

1. Each worker pulls the current parametersW from the server.
2. Each worker computes T steps of local SGD (instead of a single step).
3. Each worker j sends the resulting parameterWj to the parameter server.
4. Server waits for all workers, then ensembles the updatesWj’s, i.e.,W← 1

M

∑M
j=1Wj .

Figure 1 provides an illustration of this algorithm along with comparisons with Sync/Async
SGD. Step 1 is blocking until all workers have reported from the previous sync round. This
is implemented with a 2-phase locking procedure, where the parameter server manages a
lock for each worker and releases the locks when all workers have reported for a round.

Comparison to traditional consensus. The workers operate as a distributed state machine
across the synchronization points, where the state is the model parameters and epoch number.
Each synchronization point requires the workers to agree on a single set of parameters. How-
ever, unlike traditional consensus algorithms [5, 6], we relax the problem by reconciling the pa-
rameters via ensembling. This forgoes the need to propose a consensus value, since each worker
implicitly agrees to accept the outcome of the ensembling procedure. We only need 1 alive
worker to report to compute the ensemble, resulting in robustness toM−1 worker failures.

3.2 Resource Reallocation
Workers may be slow due to different GPU and hardware types, or on a transient basis such
as network connectivity and how busy the machine is. Since EnsembleSync is synchronized,
slow workers can cause stalled progress at synchronization points. We consider using resource
scheduling to dynamically reallocate compute resources at each sync point to adjust for slower
workers. We focus on GPU memory reallocation, as the training speed of deep learning models
depends heavily on GPU resources. Specifically, we consider the following implementation:

1. At the end of each training epoch, each worker reports their epoch execution time along
with parameter updates.

2. Parameter server estimates the optimal GPU reallocation (described below).
3. Parameter server notifies the workers of the new reallocation configuration.

Suppose there areM worker nodes and a total GPU budget ofB. We assume that the time
between sync points for node i, ti, has an inverse relationship with the amount of GPUs used
on node i, xi, such that ti=αi/xi, where αi is a coefficient that may differ for every node.

3



For a particular sync point, assume that we have access to the true αi for the next round
of computation. In practice, we rely on estimates α̂i ≈ αi. We want to solve for the GPU
allocations xi such that the maximum computation time ti is minimized,

min
x1,...,xM

max
i
fi(xi) s.t.

∑
ixi=B (4)

where fi(xi) = αi/xi in our example. In general, fi is a monotonically increasing or
decreasing function that models the relation between computation and execution time. We
show a lemma that allows for an analytical solution of this problem.

Lemma 1. Suppose fi is monotonically decreasing (increasing) for all i. Then the optimal
solution x∗1,...,x

∗
M to (4) is such that for all i,j, t∗i = t∗j , where t∗i =fi(x

∗
i ) and αi>0 for all i.

Proof. Let x∗1,...,x
∗
M be a solution where fi(x∗i ) = fj(x

∗
j ) for all i,j, with objective value

maxifi(x
∗
i ). We show that any other solution x1,...,xM must yield a larger objective value.

Suppose for contradiction thatx1,...,xM has a smaller objective value, such that maxifi(xi)<
maxifi(x

∗
i ). Since fi are monotonically decreasing (increasing), this implies that there is

some j where xj>x∗j (xj<x∗j ). Since
∑

ixi=B for all solutions, this in turn implies that
there is some k where xk<x∗k (xk>x∗k). For this k, fk(xk)>fk(x∗k) (fk(xk)<fk(x∗k)) by
monotonicity, implying that maxifi(xi)>maxifi(x

∗
i ) and leading to a contradiction.

In other words, the optimal computation time must be shared and equal between all workers.
Specializing to f(xi) = αi/xi, this lemma leads directly to an analytical solution. Taking
t∗ to be the (shared and equal) computation time between all workers, the optimal solution
must satisfy x∗i =αi/t

∗ for all i. Hence,∑
ix

∗
i =

∑
i
αi
t∗ =B =⇒ t∗= 1

B

∑
iαi =⇒ x∗i =B αi∑

jαj
.

Intuitively, if we viewαi as the rate of slowdown for worker i, each worker is allocated a part of
the GPU budget proportional to the fraction of the overall slowdown it contributes. We estimate
αi using the worker execution time in the last epoch and analytically compute the solution.

3.3 Fault Tolerance
Worker failures. To tolerate up toM−1 faulty (dead) workers, we let the parameter server
redistribute the data splits from dead workers to alive workers. All operations update the
time_last_seen for each worker. If for any worker, time.now() - time_last_seen is
greater than TIMEOUT, server marks it as dead. This is implemented with a background thread
that continuously checks time_last_seen for each worker. If the number of workers that
have reported for the last sync point is equal to the number of currently alive workers, the
background thread releases all locks to continue to the next round of training. If a dead worker
communicates again, the server marks it as recovered. Recovered workers will receive the
next epoch number and then fast forward to this epoch. It then blocks on retrieving updated
parameters from the server until other workers reach the start of the epoch, at which point
the worker is marked alive. At start of epochs, the server redistributes the data splits from
dead workers evenly across alive workers, and runs GPU reallocation on alive and recovered
workers to redistribute compute resources.

Parameter server failures. While not implemented in our system, it is possible to tolerate
failure in the parameter server as well by checkpointing and replication. The server keeps
checkpoints of model parameters at every sync point so it can reboot and resume, or if the
server is replicated, a backup can take over using the checkpoint.

3.4 Natural Gradient Descent
Typically, model ensembles average the outputs of many models. Here, we average the
parameters of the models, which may not correspond to one another. In order for parameter
averaging to be an effective ensembling strategy, we constrain the networks to not diverge
too far in output space via natural gradient descent, following Povey et al. [7].

4



Sync SGD Async SGD EnsembleSync

Train time (min) 412.2 397.9 60.95
Test Acc. (%) 83.19 82.96 84.29

Figure 2: Training time and classification
accuracies for the three algorithms during
normal execution.

Figure 3: Execution time vs training
epoch for the three algorithms.

Figure 4: Execution time vs training epoch under a worker which fails and reboots. (Left)
In Async SGD, the failed worker lags behind after rebooting. (Middle) In Sync SGD, other
workers must wait for the failed worker to reboot. (Right) In EnsembleSync, the other
workers continue after a small timeout, ensuring progress. The recovered worker gets the
current epoch from the parameter server and skips forward.

4 Experiments
4.1 Experimental setup
We evaluate EnsembleSync on distributed training of a ResNet-10 model [3] on the CIFAR-10
image classification dataset [4] using PyTorch. In normal execution, EnsembleSync achieves
better model performance than Sync or Async SGD while reducing the training time by
6.6×. We also demonstrate for slow and faulty workers that EnsembleSync uses resources
reallocation to continue making efficient progress in these settings.

In all experiments, we use 2 workers that communicate with the parameter server via RPC
primitives included in PyTorch. We take advantage of PyTorch’s dynamic allocation of GPU
memory according to GPU usage, allowing for fractional GPU allocation that changes during
execution. For normal execution experiments, we use 2 workers with 1 GPU each (Tesla Xp
and TITAN RTX). For faulty execution experiments, we use 2 workers both with GEFORCE
GTX TITAN X GPUs. For all experiments, the two workers have 37500 data examples each
from the CIFAR-10 training set (50000 examples), where they share 50% of the examples.
We found that some overlap in the dataset splits is necessary in this smaller dataset to have
enough samples to do local update steps well.

4.2 Normal Execution
Table 2 shows the execution time and classification accuracies on a test set for Sync SGD,
Async SGD, and EnsembleSync. Async SGD finishes training slightly faster than Sync
SGD due to removing synchronization, but still requires a long training time due to the
communication cost. EnsembleSync finishes training about 6.6 times faster than Async SGD
by reducing communication. In addition to making training faster, EnsembleSync improves
classification accuracy by over 1% due to a regularization effect from ensembling the models.

4.3 Faulty Execution
We test the performance of the algorithms when the workers are slow or go down. In this
experiment, we simulate failure of worker 1 at epoch 26 for 240 seconds and simulate 5
epochs of slow execution (increase each training step time by 0.5s) in worker 2 on epochs
5-15. We set TIMEOUT to 30 seconds and the total GPU resource budget to the GPU memory

5



Figure 5: (Left) EnsembleSync maintains progress under repeated failures of a worker.
(Right) GPU memory allocation (measured in number of parallel data examples held in
memory) for EnsembleSync. At epoch 5, worker 2 becomes slow and more GPU resources
are allocated for worker 2. At epoch 26, worker 1 fails and all GPU resources are allocated
to worker 2 to continue the training.

needed to process 256 data examples at once. Each worker starts off with a batch size of 128
as an even distribution. The synchronization points are at 1/10 of the total epoch size.

Figure 4 shows a plot of execution time vs progress (in epochs) under a worker failure which
triggers TIMEOUT. In Async SGD, the failed worker lags behind after recovering since each
worker is independent. We found that the lagging worker finished 20 minutes later than the
other. In Sync SGD, all workers must wait for the failed worker to come back online, pausing
the training. In EmsembleSync, the worker failure triggers TIMEOUT on the parameter server,
which releases all locks on other workers and allows them to continue making progress. Fig-
ure 4(d) shows that EnsembleSync maintains progress even under repeated failures of a worker.

Figure 5 plots the GPU memory allocation for the faulty execution run. At epoch 5, where
worker 2 becomes slow, more GPU memory is allocated to worker 2. Later in epoch 26, when
worker 1 fails, all the GPU resources are moved to worker 2. When worker 1 recovers, the
resource allocation slowly approaches equilibrium.

5 Conclusion
We presented EnsembleSync, a synchronous distributed SGD algorithm that reduces
communication via model ensembling and tolerates slow and faulty workers via resource
reallocation. Our evaluation shows that EnsembleSync is 6.6 times faster and achieves better
model performance than Sync SGD and Async SGD in normal execution, and it maintains
steady progress in training in the presence of slow or faulty workers.

References
[1] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and
Andrew Y. Ng. Large scale distributed deep networks. In NeurIPS, 2012.

[2] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[4] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2012.
[5] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 2001.
[6] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.

In 2014 {USENIX} Annual Technical Conference, 2014.
[7] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of dnns with

natural gradient and parameter averaging. 1410.7455, 2014.
[8] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free

approach to parallelizing stochastic gradient descent. In Advances in Neural Information
Processing Systems. 2011.

6



[9] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen,
and Jan S. Rellermeyer. A survey on distributed machine learning. ACM Computing
Surveys, 2020.

7


	Introduction
	Preliminaries
	Our Approach: EnsembleSync
	EnsembleSync algorithm
	Resource Reallocation
	Fault Tolerance
	Natural Gradient Descent

	Experiments
	Experimental setup
	Normal Execution
	Faulty Execution

	Conclusion

