
Google File System 2.0: A Modern Design and Implementation

Babatunde Micheal Okutubo
Stanford University

bmokutub@stanford.edu

Gan Tu
Stanford University
tugan@stanford.edu

Xi Cheng
Stanford University
cx1012@stanford.edu

Abstract

The Google File System (GFS) presented an elegant de-
sign and has shown tremendous capability to scale and to
tolerate fault. However, there is no concrete implementa-
tion of GFS being open sourced, even after nearly 20 years
of its initial development. In this project, we attempt to build
a GFS-2.0 in C++ from scratch1 by applying modern soft-
ware design discipline. A fully functional GFS has been de-
veloped to support concurrent file creation, read and paral-
lel writes. The system is capable of surviving chunk servers
going down during both read and write operations. Various
crucial implementation details have been discussed, and a
micro-benchmark has been conducted and presented.

1. Introduction

Google File System (GFS) [1] is a distributed file system
known for its capability to handle large file storage at scale,
while being fault-tolerant and preserving consistency to a
certain level to support typical usages. The original paper
on GFS [1] presented a novel and classic design, and had
achieved significant impact in both academia and industry.
However, because this work was developed at Google Inc.,
and was proprietary up to date, it is difficult to evaluate GFS
from an academic point of view given that there is a lack of
open source implementation that reflects its original design
and has sufficient documentation and testing.

Very few literature, if not none, have been dedicated to
expound many technical details of GFS that are left out in
the original paper [1], or to explain implementation ambi-
guity, that are required to achieve the intended benefits such
as crash-resistance and high concurrency. For instance, how
to achieve high concurrency on both servers (master and
chunk) and client sides? How to handle cluster reconfigura-
tion caused by chunk servers going down? Only high-level
sketches exist to answer these questions, without a concrete
implementation that one can evaluate.

These questions motivate this project, which aims to

1https://github.com/Michael-Tu/cppGFS2.0

build a GFS-2.0 from scratch, with modern software design
principles and implementation patterns, in order to survey
ways to not only effectively achieve various system require-
ments, but also with great support for high-concurrency
workloads and software extensibility.

A second motivation of this project is that GFS has a
single master, which served well back in 2003 when this
work was published. However, as data volume, network
capacity as well as hardware capability all have been dras-
tically improved from that date, our hypothesis is that a
multi-master version of GFS is advantageous as it provides
better fault tolerance (especially from the master servers’
point of view), availability and throughput. Although the
multi-master version has not been implemented due to time
constraints, we designed our system so that it can be easily
extended to include multiple master servers.

Last but not least, there was no containerization tech-
nology back when GFS was first introduced. Our team is
motivated to bring the usage of Docker as an intrinsic ele-
ment of our system so that one can easily scale up servers
and manage server restart upon crash.

In this project, we successfully built a fully-functional
GFS (single master with a configurable number of chunk
servers) that reflects the majority of its original design with
a few simplifications such as not supporting concurrent ap-
pend and snapshot. We applied Singleton and Composite
software design patterns to build the core components of the
system step by step, and we have leveraged on several state-
of-the-art open-sourced libraries such as Abseil, Protobuf,
gRPC, LevelDB, Parallel HashMap, and YAML to achieve
high software quality and performance. Furthermore, we
have conducted rigorous efforts to test our code as a sig-
nificant portion (nearly 30%) of our codebase is composed
of tests, including unit tests, mocked tests, integration tests
and end-to-end tests.

This paper is organized as follows. Section 2 presents
the architecture of our system with details regarding each
component of the system and how to build them. Section
3 discusses the testing effort in our development. Section
4 shows the performance and benchmark results of our sys-
tem. Section 5 discussed the opportunities for further de-

1

https://github.com/Michael-Tu/cppGFS2.0

velopment based on this work and our learning.

2. Architecture

Figure 1 shows the architecture diagram of GFS-2.0. The
File system is divided into three main components: Master
server, Chunk servers and Client library.

2.1. Master Server

The master server is the central part of the file system. It
handles file metadata and chunk servers control operations
in the filesystem. The actual data isn’t stored on the master,
but on the chunk servers. It knows about all the files in the
file system and all the chunks for a file, and where each file
chunk is stored.

The master server is made up of four main components:
Metadata Service, Lock Manager, Chunk Server Manager,
and Chunk Servers Heartbeat Monitoring Task.

2.1.1 Metadata Service

The Metadata Manager is the singleton object that manages
concurrent CRUD (creation, read, update and deletion) op-
erations upon metadata, which include mapping from file-
name to a series of chunk handles it owned (indexed by
chunk index), and mapping from chunk handle to chunk
version, server locations and primary lease holder.

The concurrent operations are achieved by parallel hash
maps, which is composed by a number (default 16) of
submaps underneath so that the read and write accesses to
different submaps can be safely parallelized. An essential
responsibility that the Metadata Manager carries is the man-
agement of namespace, i.e. to allow concurrent creation of
files even if they share the same parent directory. This is fa-
cilitated by the Lock Manager, which manages the creation
and fetch of locks for files, as their names are not known a
priori. The details of how Lock Manager works is shown in
the next sub-section.

The Metadata Service handles the client’s request and
operates on the metadata via the Metadata Manager. It pro-
vides the full CRUD support per client’s call, and orches-
trates a series of operations based on the protocol. For in-
stance, a file open request with creation mode led the service
to call Metadata Manager to create the file metadata and to
call the chunk server manager to allocate the first chunk (see
details about chunk server manager below). A write request
involves even more interactions, as the Metadata Service
needs to send requests to chunk servers for granting lease
and for advancing chunk versions. The Metadata Service,
along with other services are implemented as gRPC service
calls in C++.

2.1.2 Lock Manager

The Lock Manager is responsible for managing lock re-
sources for files. This singleton object is necessary as the
server does not create a lock until a file is created. It pro-
vides concurrent creation and fetch services via parallel
hash map. Furthermore, it adopts the absl::Mutex object,
which is provided by the Abseil library and supports both
reader and writer lock modes. The use of parallel hashmap,
reader/writer locks, Lock Manager and Metadata Manager
provides the master server with full capability to provide
concurrent file CRUD operations.

2.1.3 Chunk Server Manager

This manages all the chunk servers in the cluster. It is aware
of all the available chunk servers in the cluster. It is in
charge of allocating chunk servers for storing a chunk and
therefore knows where each chunk is stored. When a new
chunk server is added to the cluster, during startup it reports
itself to the chunk server manager running on the master and
the chunk server manager registers it and the chunk server
can now be selected for chunk allocation. Subsequently, the
chunk server periodically reports itself to the manager. In-
formation reported includes the available disk space, the list
of chunk handles stored and the manager replies with the list
of chunk handles that are now stale and can be deleted by
the chunk server.

When a new chunk is being created, the metadata man-
ager asks the chunk server manager to allocate some num-
ber of chunk servers for storing the chunk. The chunk server
manager maintains a sorted list of chunk servers, ordered
by their available disk, having chunk servers with the max-
imum available disk at the top of the list, so it selects the N
chunk servers with the maximum available disk. This helps
to achieve both load balancing and better disk usage across
chunk servers. It keeps track of the N chunk servers that
were selected for the chunk and the metadata manager will
ask for the location of a chunk, during a read/write request.

Chunk servers can be unregistered from the manager.
Which means the manager will no longer be aware of
the chunk server and wouldn’t use the chunk server for
chunk allocation. This is done when a chunk server is un-
available/unresponsive and explained below in the heartbeat
monitoring task.

Since the chunk servers periodically report themselves
to the manager, and they report the stored chunk handles
as part of it, the manager is able to update the information
it has about this chunk server, such as available disk and
stored chunks. A chunk server may have been previously
allocated to store a chunk, but the chunk server doesn’t
have that chunk anymore, maybe it crashed during write or
data was corrupted, through this report, that manager is now
aware that the chunk is not on that chunk server and stops

2

Figure 1. Our high-level architecture diagram.

including this chunk server as part of the location where the
chunk is stored.

2.1.4 Chunk Servers Heartbeat Monitoring Task

This is a background thread that monitors the heartbeat of
all the registered chunk servers in the chunk server man-
ager. It periodically sends heartbeat messages to the chunk
servers and declares the server as available if it gets a re-
sponse within 3 (configurable) attempts. If it doesn’t get a
response after those attempts, it declares the chunk server
as unavailable and asks the chunk server manager to unreg-
ister the chunk server, so that the manager stops allocating
that chunk server for chunks. If the chunk server becomes
available or if it was just a network partition that prevented
the heartbeat task from receiving a response from the server,
because the chunk servers report themselves to the manager
on startup and periodically, the chunk server manager will
learn about this chunk server again and re-register it.

2.2. Chunk Servers

The chunk server handles data operations. A file is di-
vided into file chunks of a configurable fixed size (default
is 64MB) and each file chunk is stored on a subset of chunk
servers depending on the replication need of the client. By
default, chunks are replicated across 3 chunk servers. The
chunks to be stored on a chunk server is determined by
the master chunk server manager, described above. Chunk
servers handle persisting this chunk data to disk. Clients
only interact with chunk servers for actual data read or
write.

The chunk servers are made up of 5 main components:

File Chunk Manager, Chunk Server File Service, Chunk
data cache, Chunk Server Lease Service, and Chunk Server
Report Task.

2.2.1 File Chunk Manager

The file chunk manager is in charge of persisting chunks
to disk. We implemented this using LevelDB [2], which
is a fast persistent key value store built by Google. The
keys and values are treated as arbitrary bytes for storage.
The file chunk manager uses levelDB to store chunks, us-
ing the chunk handle as the key and the chunk data as the
value. This allows us to enjoy the benefits of this high per-
formance storage engine in our system. We offload concur-
rency safety to LevelDB without explicit synchronization
within the file chunk manager during data read and write.

We also make use of the compression feature of Lev-
elDB, which helps to compress the chunk data and reduces
disk consumption and makes our IO faster for a cheaper
CPU cost. LevelDB compression is very fast and automat-
ically disabled for incompressible data. As part of the data
stored on the disk, we also store the chunk version, which is
used during read/write. We don’t need to cache the chunk
data, since LevelDB writes the data as files in the filesystem,
we therefore take advantage of the buffer cache.

The file chunk manager provides Create, Read, Write,
Delete, GetVersion, UpdateVersion operation for Chunks.
The Read and Write operations require the version to be
specified and returns an error code if the requested version
doesn’t match the stored version of the chunk. For create,
we store just the chunk handle as key and the create version
(1) in the value with empty data.

3

2.2.2 Chunk Server File Service

This is a gRPC service running on the chunk server that the
clients sends chunk data requests to. This handles the Read,
Send data, Write requests from clients, Create request from
the master server during chunk creation, and the apply mu-
tation request from the primary chunk server during write.
This service interacts with the file chunk manager to process
the clients request.

For chunk create requests, it asks the file chunk man-
ager to create a new chunk with version equal to 1. The file
chunk manager returns an error code if the chunk already
exists, otherwise, it succeeds and the service responds suc-
cessfully to the client.

For read requests, it asks the file chunk manager to read
the specified length of data from the specified version of the
chunk, from the specified offset. The file chunk manager
returns error code if the chunk doesn’t exist or the speci-
fied version doesn’t match the stored version or the offset
is greater than the chunk data length. Otherwise the service
returns the read data to the client.

The write workflow is quite different. The client first
sends the data to the chunk servers file service, and the ser-
vice calculates the checksum of the sent data to make sure it
matches the sent checksum, and then stores the data in the
chunk data cache (described below) using the data check-
sum as the key. After this, the client then sends the write
request to the primary server, which first checks if it has a
valid lease on the chunk, if it does it then asks the file chunk
manager to write the specified length of data to the speci-
fied version of the chunk, from the specified offset. The file
chunk manager returns error code if the chunk doesn’t exist
or the specified version doesn’t match the stored version or
the offset is greater than the chunk data length. Otherwise
the file chunk manager returns the number of bytes written.

The primary server sends this write request to all the
other replicas in parallel to apply to their copy of the chunk.
The replicas check the checksum of the write request, and
reads the data for that checksum from the chunk data cache
and does the same write using the file chunk manager. And
returns the result to the primary chunk server. The primary
sends its write result with the result of the other replicas to
the client. For deletion, the master server returns the list of
chunks to delete when the chunkserver does its periodic re-
port to master, and the file chunk manager is asked to delete
them.

2.2.3 Chunk Data Cache

This is a cache on the chunk server for temporarily storing
file chunk data sent by clients. As part of the write work-
flow, clients first push data to the chunk servers, before is-
suing the write request to the primary chunk server, which
then instructs the other replica servers to apply the muta-

tion using that data when it’s done, as described above in
the Chunk Server File Service. For our use case, the cache
maps the data checksum to the data. And data is gotten from
the cache by providing the checksum of the data as key and
it is returned if it exists. Though we built the cache as a
key value structure, which can be used to store anything.
In order to avoid having a very large cache, we simplified
our cache implementation by just removing the data once it
is no longer needed. This is usually after the client write
request has been successfully completed.

2.2.4 Chunk Server Lease Service

This is a gRPC service running on the chunk servers, which
the master uses to grant lease to the primary chunk server
for a chunk. The master sends the lease information to the
chunk server and the chunk server keeps track of the active,
unexpired lease it has been granted. This is used during
write, where the primary chunk server checks if it has a
valid lease for the chunk before proceeding.

2.2.5 Chunk Server Report Task

This is a background thread running on the chunk server
that periodically reports the chunk server information to
the master. The chunk server initially reports itself to the
master on startup before then proceeding to periodically re-
port. This keeps the master server updated about this chunk
server. Information such as the available disk space, and
stored chunks are reported to the master and the master
replies with the list of stale chunks that the chunk server
can delete.

This also helps in a situation where there is a temporary
network partition between the master and the chunk server
such that the master has been unable to reach the chunk
server for heartbeat. In such a situation, after several at-
tempts from the master, it assumes the chunk server is down
and unregisters the chunk server, which prevents clients and
the master from communicating with the chunk server. Be-
cause the chunk server periodically reports itself, even if the
reports were unsuccessfully sent during the network parti-
tion, after the network partition is fixed, the report will be
successfully submitted to the master, which then rediscov-
ers this chunk server and re-registers it. Now the master
starts using the chunk server again for chunk allocation.

2.3. Client Library

The client library provides thread-safe calls: open, read,
write and remove. Every client call is translated via a
thread-local ClientImpl object, which manages relevant re-
sources such as the cached file chunk metadata, configura-
tion manager as well as the gRPC end points that the client
uses to contact the server. The cached metadata is stored in a

4

per-thread data structure named gfs::client::CacheManager,
which provides mapping from (filename, chunk index) to
chunk handle, and from chunk handle to chunk metadata
(version, primary location) as well as chunk server loca-
tions. The CacheManager stores a timestamp when a chunk
metadata entry is created, and would return an error upon
access request if it expires.

The read implementation is relatively straightforward.
The client iterates through all chunks and issues requests
to chunk servers to fetch the content (it would contact the
master for metadata if it found that it does have one or has
an expired one). It concatenates the returned chunk bytes
and returns the results to users. Because chunks are repli-
cated, the client call returns successfully as long as one of
the read requests is successful, i.e. the client’s read can tol-
erate chunk servers down. Our implementation supports
the handling of read upon EOF, i.e. if a requested read is
beyond current EOF, we consider this as a valid case and
return the bytes read upon EOF.

Our write implementation differs slightly from the GFS
paper in that the chunk data is pushed directly from client
to all chunk servers in parallel. This significantly simplifies
the engineering efforts as the client only needs to handle
errors between itself and the chunk servers. Furthermore,
pushing data in parallel may incur less latency than the alter-
native way described in the original GFS paper, although the
latter may have a better utilization of each machine’s band-
width. We implemented a retry policy in the write library
call that is transparent to users to handle any transient fail-
ures such as lease expiration and gRPC call timeout. This
improves the stability of this function call.

2.4. System Common Components

We use Docker to deploy the file system servers in a con-
tainerized manner.

Each component has its Configuration Manager, which
allows us to dynamically change configurations of the dif-
ferent components of the system. The configuration man-
ager uses a YAML file for storing and parsing configura-
tions. The YAML file is preloaded with some initial con-
figuration such as master server address/port, lease timeout,
max chunk size etc.

We also have a System Logger, which wraps the Google
glog library for logging. This is used within all the compo-
nents of the file system for logging.

3. Testing

Testing is a crucial part of this project, as it provides ver-
ifications to each component’s expected behavior as well as
to the end-to-end behavior. Furthermore, it prevents regres-
sions which can easily happen in a large code base devel-
opment. In this project, we developed comprehensive test

suites (4K lines of code out of 15K code base) to cover tests
at all levels, including unit tests, mock tests, stress tests, in-
tegration tests and E2E tests.

Unit tests ensure the correctness of each individual com-
ponent, and serves as the foundation for the engineering ef-
forts in this work. The server-side components (Lock Man-
ager, Metadata Manager, Chunk Server Manager etc.) have
been heavily tested in multi-threaded environments using
gtest framework. For example, the unit test for Metadata
Manager tests a scenario where concurrent operations are
taking place to create files that share the same parent path
and to create file chunks underneath. All such unit tests
have been stressed tests by repeatedly running for more than
1000 times before merging up.

The mocked and integration tests serve to test a slice of
the end-to-end behavior in a single process. For example,
a client’s read call can be tested by spinning up a metadata
service and a chunk server file service in separate threads
with some mocking of the metadata and chunk data. This
helps us assess the correctness of interactions between dif-
ferent components in a relatively inexpensive way.

We also developed end-to-end tests to ensure the cor-
rectness from a user stand point of view. These tests are
intrinsically distributed, and we have developed our own
python module to automatically generate configuration files
and to launch and manage server processes. Some typi-
cal test cases include multiple clients concurrently creating
files, writing to files in parallel (each client writes to sepa-
rate files as we do not fully support concurrent write) and
reading concurrently.

4. Performance and Benchmarks
For performance and benchmarks, we leveraged the open

sourced Google Benchmarks library. We did a basic bench-
marking of read, create, and create+write performance by
testing GFS client APIs against a running GFS cluster of
single master and three chunk servers, with three replicas
per file.

Due to time constraint, we have not gotten the chance
to run masters and chunk servers separately using different
machines yet, so the benchmarks are done on the same ma-
chine, using inter-process communications via gRPC that’s
built in Docker. However, it is in our plan to add these stats.
once available, to our github README. Thus, the bench-
marks here are biased because the network communication
delays will be noticeably faster than what it will be like in
real-life. However, the numbers we gathered should still
shine some lights on the initial performance of our GFS im-
plementation.

For each benchmark we share below, we run each API
in each scenario and each parameter configuration for about
500-1000 runs, and report the average latency amongst all
the runs. We also explicitly make sure that each run uses a

5

Figure 2. Single Client Read Performance over Data Size

freshly initialized GFS client, so it will perform the entire
end-to-end GFS metadata control and the data control flow,
and not reusing the cached metadata locally to bias the re-
sults.

For reads, we benchmark our reads using a single client
operating, reading the same file chunk with read length
ranging from 1KB to 100MB, while making sure each re-
quest does not reuse metadata cache but instead re-fetch it
from master to get a clear picture of non-cached read perfor-
mance. As we can see in the Figure 2, the CPU time used on
the client is relatively stable, which is expected; but the net-
work time increases as read size increases, causing longer
network byte transfer delays. In our cluster, we used 64Mb
per GFS block size, and we tested our read performance up
to 100MB, and we can clearly tell a bump in read latency
around 64MB. This is because in our existing implementa-
tions, we read the blocks one at a time sequentially. After
we implement the reads for each block index in parallel, the
latency should noticeably improve.

We also benchmarked how file reads latency change as
the number of concurrent read clients increase. As shown
in Figure 3, it turns out the more concurrent clients reading
the same file, the better the latency, and the latency seems
to stay the same if we are reading the same block. It may
seem counterintuitive at first, but it is expected as we are
benchmarking concurrent reads to the same file. Since we
handle file reads concurrently as well on the server side,
while sharing a single file manager, the data cache from one
client’s read request already paid the cost of fetching the
data from disk, so other concurrent client reads requests can
leverage the data cache in servers memory and get a better
read latency. However, it’s also a good idea in future for us
to analyze where is the bottleneck of the read performance,
and how concurrent random reads or sequential reads la-
tency will be, because those access behaviors will change
the caching behavior on the chunk servers.

We also benchmarked the file creation time, file write
time to existing files, and file operations that need to create

Figure 3. Concurrent Client Read Performance over Client Counts

the file before write. Generally, it’s expected that creation
+ write takes longer than a simple write, because of the file
creation protocols such as Initialize File Chunks. In our
implementation, create + Write operations cannot reuse the
metadata returned by the create to write on the first index,
because we always enforce to re-issue the open with write
call to master, to coordinate the file version advance pro-
tocols, and granting lease services, due to data correctness
concerns when a chunk server fails. However, it’s possible
that we incorporate an open with write+create mode to the
master, so the file creation not only creates the file, but also
initializes the first chunk, assigns a leaseholder proactively,
so the writes to first file block doesn’t require two metadata
calls to master, but for simplicity, we didn’t but can consider
it in future.

As we can see from Figure 4, the creation latency is the
gap between the create+write latency curve and the write la-
tency curve, which is relatively stable regardless of the data
size, which is expected as file creation time is not affected
by the write operations that will come later. In future, we
think it’s worth adding additional analysis to see how file
creation latency changes as we increase the number of repli-
cas for the system.

5. Discussion

Several extensions can be made based on the current de-
velopment. First, operation logs and checkpoints of the
metadata states can be easily added. As we have utilized
Protobuf to define the metadata states, and fully integrated
them with the Metadata Manager, the operation logs can
be implemented by serializing these states as bytes using
the Protobuf and persisting them to states by leveldb [2],
which is already used in the chunk server implementation.
A simple implementation of the checkpoint service would
be spinning out a background thread that periodically wakes
up and takes a snapshot (by making the metadata read-only)
and serializing the states to bytes and then to disk. The op-

6

Figure 4. Single Client Create, and Create+Write vs Data Size

eration logs can be easily implemented by inserting leveldb
write calls when metadata are mutated. A caveat is that
some care needs to be given to the recovery of file locks
(the locks under LockManager) during log reply, as we do
not directly persist lock states.

A second extension is to develop a multi-master GFS
based on the current architecture. Several steps are nec-
essary in order to achieve this goal. First, we need to imple-
ment a consensus algorithm (e.g. Paxos, Raft) to synchro-
nize states stored at the master servers. Second, we need a
DNS service to resolve names so that the server address can
be translated to the client in a transparent way (e.g. failover
should happen transparently as client switches to a different
master server). Last but not least, a load balancing service is
needed for the master’s DNS service. These developments
require substantial engineering effort, but are valuable to
explore in the future.

As we implement a fully functional GFS that supports
concurrent reads and parallel writes, and is able to sur-
vive multiple failure scenarios, there are tremendous lessons
learned along the way. First and foremost, applying disci-
pline software design discipline and rigorous testing is a key
to carry out an elaborate design such as GFS. While the pa-
per may strike someone as straightforward, the devils are in
the details. With substantial effort given to testing, we man-
aged to find design and implementation issues in individual
component levels and fixed them early on, which is key to
the success of this project.

Second, it is important to choose the right tool and li-
brary so that one can avoid reinventing the wheel. We
thought carefully about what libraries to use to build our
system and evaluate the decision critically. For example,
when applying the parallel hash map to manage lock and
metadata, we realized that the default option is not suffi-
cient, as we would like to have atomic operations on “check
if this value exists, if so return the value otherwise return
an error”. The default function interface has to break this

into two calls which are subject to time-of-check-time-of-
use issues. This led to the investigation of building our own
solution based on the default parallel hash map, where we
develop our own interface such as TryInsert, TryGetValue
with explicit lock management in these function implemen-
tations.

Third, adding system logging turns out to be an impor-
tant decision as it provides critical information to debugging
(and turns out to be a big plus for demo). In small projects,
the role of logging is often downplayed, but in a large dis-
tributed system, logs are the key to understand the behavior
of a system.

6. Acknowledgement
We would like to thank Prof. David Mazieres and our

TA Jim Posen for their guidance and support of this project.

References
[1] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file

system. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 29–43, 2003.

[2] S. G. Jeff Dean. LevelDB, 2011 (accessed May 9, 2020).

7

