
MaoBFT: A Single Leader BFT Transaction System

Weilun Chen Boning Gao

Abstract— Among Byzantine fault-tolerant protocols, one of
the most expensive operations is master re-election. While in
the real world, leader re-election could be unnecessary. For
example, if the leader is a well-known company such as Google
or Visa, it would hardly fail and even it fails it usually comes
back online very soon. Another scenario is a system with strict
financial regulations, a fixed leader is needed to detect malicious
transactions.

In this paper, we present MaoBFT, a fixed leader BFT Trans-
action system that runs on top of async network. We sacrifice
liveness when the leader fails to achieve higher throughput.
Also, using an optimized reliable broadcast algorithm, we
reduce the communication complexity to O(N). Finally, we
present a blockchain-based synchronization mechanism that
greatly reduces tail latency in async network. It allows slow
nodes to catch up with peers by actively pulling missing
data rather than purely relying on async network’s "eventual
delivery" guarantee.

I. INTRODUCTION

Distributed System is the de facto solution for an ultra-
scale software system that grows beyond a single machine’s
capability. Almost all of our daily interacted systems are
distributed in some way. Distributed System has the imperial
benefit of tolerating single point failure. When the master
is down, usually a leader re-election process will happen
and a new leader will be online and coordinate the cluster.
However, on the other side of the coin, leader re-election is
usually computation and communication intensive. For ex-
ample, RAFT requires a timeout to kickoff leader reelection
and is not guaranteed to finish in a single round. It creates
O(N2) messages in the network, and processing these mes-
sages requires computation resources. This problem would
further be compounded with Byzantine general problem. In
PBFT, a view change requires complex exchanging of local
uncommitted pre-prepare messages.

In some real-life scenarios we can sacrifice liveness when
a leader encounters a recoverable failure. For instance, in the
case that leader is a well-known party such as VISA, we can
assume that leaders hardly fail and will be back online soon
when a blackout happens. Moreover, in the case where the
leader is an authority such as the government, the authority
should hold the lead all the time. With this observation,
our first objective is light weight. Our goal is to develop
a broadcast algorithm that doesn’t require leadership change
and runs in the scenario where occasionally leader failure
is acceptable. This greatly simplifies the design and reduces
the communication burden of leadership handling. It’s worth
pointing out that the leader node can be an abstract node
that consists of multiple physical machines. There could be
another consensus protocol running among these nodes such

as RAFT, the specific algorithm is out of the scope of this
paper.

With the unprecedented success of Bitcoin, the Byzantine
general problem is back on the table again. In this setup,
instead of fail-stop, a misbehaving node can act arbitrarily
during failure. Furthermore, we also make a loose assump-
tion about our network. We assume the network to be
asynchronous, where the only guarantee is eventual delivery.
With those 2 challenges, our second objective is to implement
our broadcast system the runs on async network and can
tolerate Byzantine failure.

Various works have been proposed to solve the problem
of BFT broadcast on async network. Some notably include
Reliably broadcast, where at most f nodes can be Byzantine
nodes in a N = 3f+1 cluster. However, this algorithm relies
heavily on async network’s guarantee. The problem of solely
async network guarantee is that there is no secured delivery
time. In the case where messages need to be serialized, this
could create a problem that fast messages be blocked by slow
ones in earlier positions, creating a long tail in transaction
delivery. Thus, our last goal is to resolve this long-tail latency
problem by introducing a way to synchronize for slower
nodes to catch up. This cannot be achieved by asking any
peer directly because there is no way to know whether the
answer is correct or made up by a Byzantine node. However,
with the emerging of blockchain, we can rely on it to safely
synchronize with peers if we partially know the chain and
just need to fill holes in the chain. We’ll describe in detail
in later sections.

TABLE I
OBJECTIVE OF MAOBFTS

Light Weight MaoBFT sacrifices
liveness when master is down.

BFT on Async Network MaoBFT runs on async network
and can tolerate at most f Byzantine nodes

in a N = 3f + 1 cluster
Fast Sync Slow nodes can catch up

by syncing with any peer

Finally, to demonstrate our design, we implemented a
transaction system. Users can deposit money or transfer from
one to another. We choose a transaction system because it
requires strong ordering that a later transaction cannot be
applied if the previous ones haven’t been applied yet. Strong
ordering will help us demonstrate the benefits of having a
synchronize mechanism since later transactions will all be
blocked if previous ones are not received yet.



Fig. 1. Block

Our paper expands as follows. We present related prior
works in section ii. Section iiiexplained our system imple-
mentation. Section ivpresents our evaluation and in section
vwe’ll explain future works to augment the system.

II. PRIOR WORK

In the case of a Byzantine fault, a server can appear
failing and functioning at the same time, behave differently
to different observers. It is difficult for the other components
to define its status and kick it out of the cluster because
they need to first reach a consensus on which component
has failed in the first place.

PBFT[1] is the fist well-studied protocol to solve this
category of problem that tolerates optimal of f Byzantine
nodes in an N = 3f + 1 nodes scenario. PBFT requires
replicas to first agree on a unique, serial ordering of requests;
the requests are then executed in that order and replies sent to
the clients. However, PBFT is based on a weak synchronous
assumption that message delay d(t) doesn’t grow faster than
time t indefinitely. Weak synchronous assumption can be
easily reverted it the opponent gains control over the net-
work schedule. To address this, HoneyBadgerBFT[2] makes
async network tolerable by using an asynchronous common
subset(ASC) with reliable broadcast(RBC). HotStuff reaches
linear view change and also reduced the authenticator com-
plexity. In this paper, we want to focus on a single leader
scenario so view change cost is not a concern.

RBC was first introduced by Bracha[4]. It is an asyn-
chronous byzantine agreement protocol with communication
complexity of O(n2). C. Cachin and S. Tessaro reduced
the complexity to O(n) with erasure codes[6]. Although
RBC has a higher authenticator complexity[3], we valued its
asynchronous property which can benefit the throughput and
system robustness. So instead of using signature combining
via threshold cryptography in HotStuff way, we adopted an
optimized RBC as a building block.

III. IMPLEMENTATION

In this section, we’ll talk about how do we implement
our system. In the section below we refer to the broadcaster
as leader and nodes that only participate as follower, we
also refer to users that try to commit information into the
system as client. For its fast runtime speed as well as un-
derstandability, we choose Golang to implement our system.
Messages communicated between nodes are defined using
protobuf, and we implement the communications channels
between nodes using gRPC.

Overall, our system consists of 3 layers that perform
different functionalities:

RPC layer: In this layer, a node exposes a bunch of
different RPCs to clients as well as peer nodes. Note that
all clients make requests to the leader, and leader exposes 2
interfaces to clients:
• ProposeTransaction(ProposeTransactionRequest):

This RPC service allows users to propose a transaction
that changes the state of the system. There are 2
types of transactions supported: Deposit or Transfer.
A deposit transaction can only be issued with a
special client called administrative client, while transfer
transaction can be proposed by any client. We validated
their identity and information integrity by signing a
digest of the information. A UUID will be returned to
the user, and the user can obtain the transaction status
by looking it up through GetTransactionStatus RPC.

• GetTransactionStatus(UUID): By providing an UUID
obtained from ProposeTransaction, a user can get the
status of transaction. There are 5 possible transaction
statuses: COMMITTED: the transaction is accepted
and applied to the system. STAGED: the transaction is
accepted but not applied to the ledger yet. PENDING
means the transaction is created by the leader and
broadcasted out. REJECTED means the transaction
is either not a valid transaction, or somehow didn’t
make it to the system due to network partition. Finally,
UNKNOWN means this transaction is only received by
the leader but not processed yet.

RPC layer also maintains an event queue. We batch these
user transactions to reduce the system overhead. An event
queue caches client requests in FIFO order based on its
arrival time. It rejects any order that is invalid to the system
such as overdraw. We guarantee that the order in the queue
will also be the same order that will get committed to the
ledger.

Note that, periodically, the leader will send out an empty
request to followers if no request has been sent out beyond
a time t. This heartbeat is to help followers sync up with the
system, which we’ll describe in detail later.

Application Layer: We maintain the ledger and vali-
date transactions in memory in this layer. The ledger we
maintain is essentially a hashmap that stores account names
to their balances. When receiving a message coming from
the broadcast channel, we validate it with the ledger and
discard invalid messages. For example, if a transaction in
the message overdraws one’s account, we will not apply the
entire message. Note that this layer is not persistent, and we
defer persistent responsibility to the blockchain layer that
we’ll describe very soon.

Core Layer: The core layer consists of 2 components:
Blockchain and RBC.

We use blockchain to store all messages, a.k.a Blocks, in a
persistent way to handle failover. It also enables synchronize
mechanisms that couldn’t be achieved using a normal logger.
A block will contain multiple transactions to reduce system
overhead, and linearizability is achieved that transactions in



Fig. 2. Overall Architecture

blockchain will be the same order as added to the event
queue. Another core component is RBC module, which
takes one or multiple blocks and reliably broadcast it in
the underlying async network. We implement the async
network by infinitely retrying with exponential backoff until
we succeed. We’ll show in later sections how Synchronize
Mechanism can increase RBC throughput.

A. Optimized Reliable Broadcast

We made some modification to RBC, the algorithm is
shown in Fig.3.

A big difference is that we make blockchain a building
block of RBC. It helps us add SYNC message to reduce
the time for a fallen behind node to catch up and increase
the system throughput(see Fig.6). SYNC mechanism details
will be explained in the following subsection.

But blockchain brings in a split-brain case, when a byzan-
tine leader sends two blocks v1, v2 with the same prevhash in
a manipulated order that some followers committed v1 first
and others committed v2 first. When the other block came,
the slot on the blockchain is already taken which results in a
failure commit and two different chains. To avoid this split-
brain case, PREPARE carries prevhash pv of block v and
followers will verify a different block has not been received
with the same pv before multicasting it.

B. Blockchain Design and Wire System

As demonstrated in 1, each block consists of 3 sections. A
prevhash which is the SHA256 hash of the previous block’s
content. Transactions TXs proposed by clients, and curhash
which satisfies:

SHA256(prev_hash, TXs) = cur_hash

We partition the blockchain into 3 areas demonstrated by
4. Specifically, there are 3 areas in the blockchain:

Optimized RBC(leaderP , with followerPi)
• upon client request(v) where v is a block with hash

h and prevhash pv,
let {sj}j∈[N ] be the splits of an (N−2f,N) erasure
coding scheme applied to v
let h be a Merkle tree root computed over {sj}
P send PREPARE(h, bj , sj , pv) to each party Pj ,
where bj is the jth merkle tree branch

• upon receiving PREPARE(h, bj , sj , pv) from P ,
if pv has been received with a different Merkle root
of bj , discard
multicast ECHO(h, bj , sj , pv)

• upon receiving ECHO(h, bj , sj , pv) from Pj ,
check that bj is a valid Merkle branch for root h
and leaf sj , and otherwise discard

• upon receiving valid ECHO(h, _, _) messages from
N − f distinct parties,
- interpolate {s

′
j} from any N −2f leaves received

- recompute Merkle root h
′

and if h
′ 6=h then abort

- if READY(h) has not been sent, multicast
READY(h)

• upon receiving f + 1 matching READY(h) mes-
sages, if READY has not yet been sent, multicast
READY(h)

• upon receiving 2f +1 matching READY(h) mes-
sages,
wait for N − 2f ECHO messages, then decode v

• Apply block v to application
- if block v’s previous block is COMMITTED,
COMMIT(v)
- otherwise STAGE block v
- if 3 or more blocks are STAGED, multicast
SYNC(hl, hf ) where hl is the hash of last commit-
ted block and hf is the hash of first staged block

Fig. 3. optimized reliable broadcast

Committed: The blocks in this area are connected,
meaning every block’s prev_hash is the previous block’s
cur_hash. A Block gets committed into blockchain if it is
valid and received by RBC described above.

Staged: A block will be added to the staged area if it’s
received from RBC, but not able to connect to previous
blocks in the committed area.

Pending: A pending block is added only in the leader’s
blockchain. And it contains transactions that are broadcasted
by this leader, but no consensus is reached yet.

Our blockchain is persistent by using on-disk persistent
storage, and we assert blockchain as the only source of truth
for recovery after failover.

As for the wire system, we maintain it in memory. It will
validate blocks in the Committed chain by iterating every
transaction within that block in order. If any transaction is
invalid, we abandon the entire block and don’t apply it to the
wire system. Note that the internal state of the wire system
can be recovered by simply reading the block in order during



Fig. 4. Blockchain Design

failover, and we don’t need to dump the data inside the wire
system into a disk.

C. Syncrhonize

Solely relying on async network’s promise can result in
a very long backlog. For instance, all blocks in staged area
could be prevented from committing by just one single block,
and there is limited things we could do rather than just wait.
We tackle this problem by letting nodes to actively asking
for missing blocks if the backlog it too long. To achieve this,
one way of doing this is to ask at least 2f+1 peers about the
missing blocks. However, we observe that with blockchain,
we could simply ask any peer to help fill the gap. The nodes
that needs to sync will create a Sync request composed of
both lastCommittedBlock and latestStagedBlock. And
any peer that provides a valid answer can be trusted and
adopted immediately. This is based on 3 facts:
• Any time we receive a block from RBC, there could be

an opportunity window that we can retry.
• lastStagedBlock and lastCommittedBlock received

by any non-faulty node will be eventually received by
all non-faulty nodes.

• No one can fake a blockchain answer since it’s consid-
ered as computational impossible.

Thus, in our system, any follower that have long staged
chain can issue a best effort Sync request to its peers in round
robin order. A non-faulty node will respond to this request,
if it can answer, by providing a list of blocks that fill the gap
between lastCommittedBlock and latestStagedBlock. In
practice, we set the threshold to sync as more than 3 blocks
in the staged area. To prevent stagnation if no request is issue
in a period, leader will issue an empty block to followers as
a heartbeat. This block can trigger the sync mechanism and
keep every node in the same page.

IV. EVALUATION

We evaluated our Mao-BFT implementation[7]. All tests
ran on a MacBook with 2.9 GHz Intel i7 CPU and 16
GB memory. Since we didn’t deploy it to cloud servers,
the network can be neglected. This evaluation reflects the
computational costs of messages.

A. Latency

Transaction latency is the time duration after a request is
sent until committed when the leader receives 2f+1 READY

Fig. 5. transaction latency and number of nodes

and N − 2f ECHO. The latency number is an amortized
result generated with the Go benchmark framework.

As shown in Fig.5, the amortized latency grows linearly
with the number of participants. Erasure coding and Merkle
tree reduce the communication cost of RBC to O(n).

B. Throughput

The pure async network is hard to mock. In our system,
each message is an async call with infinite retries in case
of failure. However, gRPC’s connection establishments are
expensive. So we came up with a Sync mechanism with
exponential backoff timeout to avoid frequent connection
creation. To trigger retries, we deliberately pull one server
down. So this benchmark runs with 1 leader and 2 followers.

Fig. 6. throughput comparison

The blue line in Fig.6 shows the throughput with the
timeout set to a fixed 1 second. The red line shows the
throughput when exponential backoff timeout is applied(retry
after 1s, 2s, 4s until 300s as maximum). When the timeout
is set to 1 second, the connection reestablishment overhead
can slow the system badly and the throughput is 53 trans-
action/second. Also in this fixed timeout setting, the more
messages sent, the more retrying threads will be running,
so the curve becomes steeper as more messages sent out.
With exponential backoff(red line), the throughput reaches



263 transactions/second with a flatter curve indicating the
throughput is more stable.

V. FUTURE WORK

To increase the leader’s availability, the leader can be a
Raft-based cluster, which is not implemented yet. Leader
reelection can happen within this Raft cluster, which is much
cheaper than happening in the whole BFT system. And there
are other combinations of consensus protocols besides Raft
and RBC. An alternative to RBC is signature combining
via threshold cryptography, where a leader requires a larger
bandwidth to send requests and collect responses from all
followers.

Dynamic membership is another feather we put the effort
into but decided not to include. It is not easy to add a node
dynamically to an RBC protocol. Because each participant
needs to update its byzantine limit and authorized keys,
which can be blocked by potential byzantine participants.
If we make the condition looser, ex. a certain quorum of
acknowledgments are needed, the system is possible to end
up in a split-brain state. A straightforward solution is to shut
down all nodes and reconfigure then bring them back online
together.

VI. CONCLUSION

Mao-BFT is a single leader Byzantine fault-tolerant sys-
tem. It sacrifices liveness when the leader fails but achieves
a simpler design and higher throughput if the leader hardly
fails. It fits in scenarios where financial regulations are strict
and a fixed leader can detect malicious transactions. It can
also be utilized by a company that provides servers with high
availability to reduce the overall cost of a BFT transaction
system.

REFERENCES

[1] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In
OSDI, volume 99, pages 173–186, 1999.

[2] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
2016. The Honey Badger of BFT Protocols. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, Vienna, Austria, October 24-28, 2016. 31–42.
https://doi.org/10.1145/2976749.2978399

[3] Yin M, Malkhi D, Reiter M K, et al. Hotstuff: Bft consensus with
linearity and responsiveness[C]//Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing. 2019: 347-356.

[4] Bracha G. Asynchronous Byzantine agreement protocols[J]. Informa-
tion and Computation, 1987, 75(2): 130-143.

[5] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[R].
Manubot, 2019.

[6] C. Cachin and S. Tessaro, "Asynchronous verifiable information
dispersal," 24th IEEE Symposium on Reliable Distributed Sys-
tems (SRDS’05), Orlando, Florida, USA, 2005, pp. 191-201, doi:
10.1109/RELDIS.2005.9.

[7] Mao-BFT https://github.com/gopricy/mao-bft


