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Abstract

The ability to agree on information and make joint decisions is critical for au-
tonomous multi agent systems. However in the real world, such agents may
experience a number of unexpected failures. Critically, in these settings, agents can
fail in Byzantine ways, such as sending faulty sensor observations without knowing
that the sensors are faulty. In this work, we aim to design a technique to allow a set
of agents to come to consensus on observations, in the face of both unresponsive
agents and maliciously corrupted observations from a subset of agents. Concretely,
we first formulate multi agent decision making as a consensus problem in which
Practical Byzantine Fault Tolerance (PBFT) can be applied. We then propose an
extension to PBFT which assumes that all non-faulty agents observe noisy versions
of some true underlying state, and leverages this to come to consensus on non-faulty
observations. An important difference in our extension is that agents must reach
consensus on an observation that is as close to the true state as possible in order
to coordinate with each other. In regular PBFT settings, there is no constraint on
which value agents converge to. Lastly, we demonstrate experimentally across
a range of simulated sensor failures that our method accepts faulty observations
significantly less than PBFT, and show on a multi-agent robotic control problem
that this enables more effective task completion.

1 Introduction

Multi-agent decision making systems have a number of applications, ranging from networks to
robotics. The central goal of these systems is to have a set of agents jointly interacting in an
environment, trying to either achieve some individual or shared goals. In order to deploy such a
system in practical domains like robotics, methods need to be robust to real world challenges, such
as the possibility of failed agents, as well as arbitrary sensor failures, which can lead to maliciously
faulty observations.

In this work our goal is to enable a
set of coordinating agents to be robust
to the above challenges in making de- E x

cisions. Concretely, we consider the
problem setting where /N agents must - 2, Consensus EH “Left”
agree on an observation, and each use

it to select an action. We would like

the agents to (1) always come to con- E

sensus on the same observation and
(2) come to consensus on relatively ac-
curate observations, even in the pres-
ence of faulty agents and noisy sen-
sors (See Figure[T). Our contributions
are as follows: First, we incorporate
practical byzantine fault tolerance (PBFT) [[1] as a consensus protocol into multi-agent decision
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Figure 1: Problem Setting. We consider the problem setting
where IV agents each receive an observation, and must come to
consensus on a single observation used to select an action. They
should do so in despite faulty agents and sensor observations.



making problems. Second, we extend this framework with additional leader filtering and agent
filtering components such that the agents can come to consensus on non-faulty observations. Lastly,
we show experimentally that this results in coming to consensus on more correct observations across
a range of domains, which in turn results in better task completion performance in multi-agent tasks.

2 Related Work

A number of works aim to study consensus algorithms and efficient approaches for reaching consensus
in distributed systems. Works like 2 Phase Commit [3]], Paxos [2], and Raft [4] propose such systems.
Another line of work aims to reach consensus even with faulty agents which are Byzantine, that is
they can fail in aribtary and malicious ways. Some such BFT consensus protocols are PBFT [1] and
HotStuff [5]. In our work, we aim to support arbitrary agent failures, and thus built off of a BFT
consensus protocol, namely PBFT.

3 Preliminaries

We begin by formalizing our problem setting. Specifically we assume that we have a set of N
agents [a1, .., an] acting in an environment represented by a Markov decision process (MDP) M =
(S, A, R, T) where S defines a state space (the states underlying the environment), .4 defines an
action space, R : S x A — R defines a reward function which the agents aim to maximize, and
T :S xS x A — R defines transition dynamics between states. We assume that at timestep ¢ the N
agents receive observations drawn from a distribution conditioned on the true underlying state, that is
o ~ p(:|s;). Agents should come to consensus on a single observation o} € {0}, ...,o¥ } which a
behavior policy [af, ..., al!] ~ 7(0}) uses to select actions for all agents.

Additionally we assume that up to f = (N — 1)/3 agents may be faulty, where if an agent  is faulty,
it can receive any arbitrary observation. We also assume that faulty agents may fail in any other sort
of byzantine way.

4 Method

We now describe our approach. First, we describe how we apply PBFT to multi-agent observation
consensus. Second we describe the additional components we add to ensure consensus on non-faulty
observations. Lastly, we go over implementation specific details.

4.1 Multi-Agent Observation Consensus using PBFT
We begin with N agents, each receiving observation of. Let the current leader be designated ar,.

At timestep ¢ agent i receives an observation o} and send a message to the leader a;, which includes
the timestep, its index, and its observation: < ¢, 0¢,4 >. Once the leader has received such a message,
it will store in memory that for the specified timestep it has chosen this observation o}, and will
stop accepting any additional requests of this form. It will then initialize a slot number for this
proposal, and will send out preprepare messages to all agents including the proposal slot number s;
and observation, as well as its own information: < PrePrepare, ¢, 0}, s¢, L >.

Standard PBFT
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All agents who receive this pre-
prepare message and will store the slot
number and timestep of the received
message, and if it is the first on they
received will send prepare messages
to all other agents which include the
timestep, observation, and their index:
< Prepare, t, 0}, 54,4, L >.

The agents track the prepare mes-
sage they receive and store how many
unique ones are received for each slot
number/observation. Upon receiving
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2f + 1 prepare messages (including re-prepare Prepare Cormmit

the agents own) for a single slot num- Figure 2: Overview of applying PBFT to the multi-agent observa-
ber/observation, the agent will have tion consensus problem.

heard from the majority of non-faulty

agents, and prepares to commit the observation. The agents then send out commit messages,
< Commit, ¢, 0}, s¢,%, L > to all other agents.



Similar to prepare, the agents track the commit message the receive and store how many unique ones
are received for each slot number/observation. Upon receiving 2 f + 1 commit messages (including
the agents own) for a single slot number/observation, the agent knows that the majority of non faulty
agents have sent commits, and thus the agent can commit the observation.

A few key differences between our application of PBFT to this setting and standard PBFT is that
(1) we do not consider the leader election process, and (2) do not utilize checkpointing. As we will
describe in the next section, leader selection is done via rotation, and as a result does not depend on a
full round of consensus for leader election. Second, since the agents only need to agree on the current
observation, we do not need to utilize checkpointing to maintain a consistent state record across all
agents.

An overview of this full process is shown in Figure 2] Note that while this allows all non faulty
agents to come to agreement on a single observation even with byzantine faulty agents which may
fail arbitrarily, it does nothing to guarantee that the observation itself is correct. Specifically, in the
event of a faulty sensor, it is possible that a bad observation might be received by an agent, and if
that agent is the first one to send its observation to the leader, that faulty observation very well could
become the one accepted by the set of agents.

4.2 Robustness to Faulty Observations

In order to enable robustness to faulty observations, we add additional components on top of PBFT as
described in the last section. Specifically, we include (1) a leader observation filtering phase, where
the leader filters out potentially bad observations, (2) an agent filtering phase where agents refuse
pre-prepare messages with possibly bad observations, and (3) a leader rotation system where no agent
stays leader permanently. We now describe each component in detail.

4.2.1 Leader Observation Filtering

The first thing we add is leader filtering, where leaders filter out observations which may be faulty.
Specifically, leaders wait until they get observations from the majority of non-faulty nodes (2f+1),
and then do outlier filtering on the observations before selecting the one to send. Specifically in the
case of real valued observations, the leader selects the median, and in the case of high dimensional
observations the leader selects the observation closest to the mean.

4.2.2 Agent Observation Filtering

While leader observation filtering can help prevent the group from agreeing on faulty observations, it
still does nothing to handle the case when the leader themselves might be faulty. For example, even if
all agents send correct observations, a malicious leader could send a faulty observation instead in a
preprepare message.

To handle this case, we include agent observation filtering, where agents simply measure the absolute
difference between their own observation o} and the observation received in the preprepare message
o*. If the difference between the two is above some threshold €: [0} — 0*| > ¢, then the agent requests
a leader change. The leader change request simply asks to increment the leader, as described in the
leader changes section. This helps prevent against malicious leaders.

4.2.3 Leader Changes

While agent and leader filtering helps prevent against most faulty observations, it is possible that a
malicious leader may subtly change observations while not violating the e threshold described above.
To protect against this, after each commit the leader is rotated, incremented through all agents.

While after every commit the leader rotation described above will happen, there are other cases when
an agent might request a leader change (either due to a timeout or a bad pre prepare observation as
described in the last section). In these cases agents send leader change requests, and once an agent
receives 2f+1 (including its own) leader change requests (with the same current leader), the agent
increments its leader. Note that since agents will only increment the leader due to a commit or 2f+1
leader change requests with the same signature, both require majority of non faulty nodes, so both
cannot occur simultaneously, and thus all non faulty agents will always point to the same leader.

4.3 Implementation Details

Lastly, we describe the exact implementation details of our method, for which code can be found
athttps://github.com/suraj-nair-1/cs244b_projectl. Concretely, the codebase is imple-
mented in python with asyncio and aiohttp, where each agent is run in a separate web server. For
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each experiment, a master process launches all agents in a parallel. The agents then communicate via
get/post requests, until reaching consensus, at which point the master process recovers their agreed
upon value, and uses it to step actions in the environment.

S Experiments

We aim to address the following questions in our experiments: (1) Is our method robust to standard
Byzantine faults? (2) Can we reach consensus on accurate observations despite the presence of faulty
ones? (3) Can we use our method in a multi-step decision making task to improve task performance?

Domains. To answer our first and second questions, we use a Temperature domain where agents
individually estimate the current temperature and must reach consensus on a value. We also evaluate
our second question on an Egocentric Image View domain (shown in Fig. [7), where each agent
observes an image from a different view and must agree upon reasonable image views. To evaluate
our third question, we use gridworld environment ( Fig. [6). Agents must come to agreement on
positions of dynamically changing obstacles over multiple timesteps in order to navigate towards the
goal.

Method Comparisons. We compare our consensus protocol against three methods. In Leader
Filtering (LF), only the leader checks for faulty observations from other agents. In Agent Filtering
(AF), non-leader agents check for faulty observations from the leader. In PBFT, we get rid of both
agent and leader filtering, leaving us with with an implementation that is akin to PBFT [1l]. We denote
our consensus protocol as LF+AF because it contains both leader and agent filtering.

5.1 Robustness to Standard Faults

We ask whether LF+AF is robust to standard Byzantine faults like PBFT is in the Temperature domain.
We consider five faults where the (1) leader fails to send an observation request, (2) non-leader agents
fail to send prepare messages or (3) commit messages, as well as agents that do not participate in
leader change (4) during the reply phase or (5) because of a timeout. During evaluation, we randomly
sample from the 5 faulty agents. In all of our evaluations, we find that our method is on par with
PBFT in that it is able to always reach consensus on a value.

In Flg El’ we evaluate how incorrect Observation Correctness for 20 Random Samples
the consensus value is from a ground of Faulty Agents (20 Agents, 2 Epsiodes)
truth observation by varying the num- —— LF+AF

ber of faulty agents in a group of 20 o

agents. We measure incorrectness us- — &

ing the mean absolute observation er- Bl T—
ror averaged over 20 random samples

of faulty agents. Each random sample
is evaluated over 2 leader changes. We
observe that methods that incorporate
leader filtering are able to maintain a
low error rate compared to methods
that don’t. Surprisingly, methods that 0 1 2 3 H 5

do not have leader filtering do poorly Number of Faulty Agents

even when there are 0 faulty agents! Figure 3: Average error of consensus values.

The main source of error stems from

the agents’ noisy observations; from this we can conclude that choosing the median allows the leader
to pick more accurate observations.
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With evidence that LF+AF can agree on reasonably accurate observations, we next measured how
quickly it takes agents to reach a consensus. In Fig. ] (a), we look at the time it takes to reach
consensus vs. the number of agents, assuming that there are no faulty agents. As expected, the more
agents we have the longer it takes to reach consensus. Fig.[4] (b) illustrates what happens if we vary
the number of faulty agents. We find that more faulty agents cause more timeouts and leader changes
which increases the time it takes to converge.

5.2 Faulty Observations

To answer our second question, we evaluate the mean observation error with malicious agents that
send faulty observations. These malicious agents differ from the agents in the previous section in
that their observations are not just noisy, but are extremely far from ground truth. Specifically, we
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Figure 4: Time to reach consensus based on varying numbers of agents and faulty agents. Larger
numbers of agents and faulty agents increase consensus time.
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Figure 5: Average error of consensus values with malicious agents that report faulty observations.

experiment with both malicious leader and non-leader agents. Results from the Temperature domain
with 20 and 50 agents are shown in Fig[5] As expected, PBFT performs the worst because it doesn’t
do any filtering and is more likely to pick a bad observation as we increase the number of faulty
agents. We find that LF performs poorly compared to AF and LF+AF because it is helpless against
malicious leaders.

We also evaluate our method in the Egocentric Image #Faultv Agents| 0 1 1
View domain. The goal is to see whether agents can agree P]);FTg 0103
upon reasonable image views, and not unreasonable ones [FAF 0 O

such as images that are completely black (see Fig. [7).
In Table [T} we compare LF+AF and PBFT agents and Typle 1: Reports the % of timesteps (out
report the percent of timesteps (out of 10) where agents  of 10) where the agreed upon observa-
converged on a faulty observation. We find that LF+AF  tjon was faulty, for our method (LF+AF)
was able to reach consensus on non-faulty image views 3nd the baseline.

whereas PBFT failed 3 times.

5.3 Multi-Step Decision Making (Gridworld)

To answer our final question, we integrate our LF+AF consensus protocol with a gridworld environ-
ment. In this task, shown in Fig.[8] agents are supposed to navigate to the bottom right corner while
avoiding dynamic obstacles shown in dark blue. All agents have full observability but have noisy
estimates of the obstacle positions. As a result, agents must come to consensus on obstacle positions
before they can take an action. Obstacle positions randomly change at each timestep, requiring agents
to repeat the consensus protocol until everyone has reached the goal.

We investigate how long it takes agents to reach the goal in the presence of malicious agents. In Fig.[6]
we demonstrate the number of timesteps it takes 12 agents to navigate 10 dynamic obstacles as we
vary the number of malicious agents. Results show the average number of timesteps over 10 samples.
We find that although all methods perform similarly with O and even 1 faulty agent, by the time we
get to 2 faulty agents, we can see that LF+AF and AF are able to complete the task faster than LF and
PBFT. Once again, we hypothesize that this is because LF+AF and AF are robust to malicious leaders.
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Figure 7: Images that agents reached consensus on over 10 trials. PBFT agents converged on faulty
(black) images 30% of the time.
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Figure 8: Visualization of the gridworl task. LF+AF agents are able to reach the goal must faster than
PBFT agents. PBFT agents often agree upon incorrect obstacle positions, causing the agents to stall.
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We visualize the gridworld task in — LF+AF
Fig.[8] The visualization depicts 4 B e
agents (with 1 faulty) trying to nav- | ;FF
igate 50 dynamic obstacles. We see
that it takes much longer for PBFT
to complete the task because agents
tend to stall. PBFT stalls more than
LF+AF because PBFT agents often
agree upon incorrect obstacle loca-
tions. Using these incorrect locations,
agents pick actions that would collide 101
with an obstacle, causing them to stay 0 1 2 3
in place. Number of Faulty Agents

Figure 6: Time to complete the gridworld task based on the number

6 Discussion of faulty agents.
and Future Work

In summary, we propose an extension of the PBFT consensus protocol that aims to agree upon
accurate observations by introducing leader observation filtering, agent observation filtering, and
regular leader changes. We evaluate our protocol on three domains and find supporting evidence
that (1) agents are able to agree upon relatively accurate values and (2) agents can use this to more
efficiently complete tasks. Currently, leaders filter noisy observations by taking the median value (or
mean value for high-dimensional inputs). However, these statistics do not describe the underlying
distribution well especially if samples have high variance or bias. In future work, we hope to explore
different ways leaders can choose this value in a way that is more robust to noisy observations. We
have also assumed that agents have full observability of the world. In future work, we also hope to
extend our work to allow agents with partial observability to reach consensus.
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