The Paxos Algorithm, When Visualized, is Actually
Pretty Simple

Jackson Lallas and Siddhartha Prakash; https://github.com/sidscrazy/Paxos

1 INTRODUCTION

The Paxos Algorithm has a reputation for being difficult to
understand. Perhaps, as Lamport noted, this is due to its
initial presentation which included an island metaphor and
copious amounts of Greek. It is one of the few algorithms in
computer science with the distinction of inspiring work to
create a new protocol not to improve on the speed or formal
properties of the predecessor but just to be simpler.

Our project aims to bring clarity to the Paxos algo-
rithm by creating a visualization tool that can demystify
Paxos and make it easier to understand. The first step was to
create a Paxos implementation using multiple processes as
nodes on a single machine that could feed in data to a visu-
alization scheme. Our Paxos implementation creates a log of
relevant messages which are then ordered and represented
visually.

The rest of this paper is ordered as follows: Section
2 briefly discusses the background on Paxos and then de-
tails our implementation of multiprocess Paxos and a visual
tool. Section 3 shows the results of performance tests on
our Paxos implementation. Section 4 details some challenges
and limitations that our implementation ran into, and what
we would do to extend the project further. Finally section 5
presents the conclusion.

2 PAXOS AND OUR IMPLEMENTATION

Paxos is a protocol for distributed systems to achieve con-
sensus among a network of unreliable and connected nodes
on some value. Consensus is a crucial problem in distributed
systems because a set of machines performing as a group
have to agree on final decision to ensure integrity of the
data being processed across different machines. In Paxos
each machine has some combination of three roles: proposer,
acceptor, and learner. The proposers handle initiating a pro-
posed value as the consensus value that the group together
has to agree on, acceptors vote on whether or not to ap-
prove proposed values, and learners track the results of the
vote to determine whether consensus has been reached. A
common optimization is to make all proposers as learners
too so that votes go directly back to where they came from
and communication is simplified, which we chose to do in
this project. For a detailed explanation of the protocol, we
strongly recommend reading the original paper by Lamport:
"Paxos Made Simple." [1].

PaxosController

mn (= =

PaxosNode PaxosNode
Process Process

—

Visualizer

Figure 1: The visualization pipeline. A Paxos simula-
tion produces a live transcript which is given as input
to the Visualizer.

Since our goal is to visualize Paxos we created an
implementation for consensus among multiple processes in-
stead of multiple machines, such that anyone could run our
simulation. We implemented Paxos in c++ with about 800
lines of code. The two core classes to our simulation are Pax-
osController and PaxosNode. PaxosNode simulates a single
machine running Paxos. It includes all information for the
state of Paxos on that machine and also simulates crashes
with some random, tunable probability.

The PaxosController is used to set up the simulation
and initialize node state. It also acts as a virtual network
switch between the nodes which greatly simplifies inter-
process communication. Without the virtual switch at the
PaxosController, nodes would need to establish sockets with
all other nodes after creation. We found that the network
switch was a reasonable approximation of how communica-
tion would actually work in a datacenter running Paxos and
greatly simplified messaging between processes.

Since the PaxosController doubles as a virtual switch,
it has a global view of all messages sent during a run of single
round Paxos. Each message is timestamped before it is sent
to the controller from a node. These timestamped messages
are logged so that the visualizer can have a transcript of the
entire Paxos round and use timestamps for ordering between
different events.

Finally, we implemented a PaxosVisualization
scheme in python that takes the CSV log file produced by the
PaxosController and creates a table-like visualization of the
current Paxos run. Each row in the table represents a single
message and has the receiver marked. This allows users of
the visual tool to track communication between different
nodes and see edge cases in practice. We also log crash and
resume from crash events so that the user can visualize Paxos
under worst case conditions. The visualizer can run at the
same time as our Paxos implementation, allowing the user

https://github.com/sidscrazy/Paxos

CS244b 20, June 2020, Stanford, CA

Figure 2: Sample Visualization Output for 5 nodes and
1 proposer.

to get a live view of the algorithm. At first we considered
running the visualizer after consensus had been reached,
but we found that under high failure conditions consensus
would take minutes, if occurring at all, so the live simulation
was implemented instead.

3 PERFORMANCE ANALYSIS

We tested our Paxos implementation by scaling up the num-
ber of nodes and number of proposers and recording the
average time to reach consensus in each different environ-
ment. These tests were performed on the Stanford myth
machines. To see how well our implementation scaled with
additional nodes under a single proposer, we tracked average
time to consensus for simulations with 5, 10, 15, ..., 40, 45,
and 50 nodes. In our proposer tests we kept the number of
nodes static to be 15 and record how well our implementa-
tion performed with 1-8 proposers.

Furthermore, we ran each of these tests in a low fail-
ure and high failure environment. In the low failure environ-
ment there was a 5% probability of a failure, and should a
failure occur there was a 98% probability that failure would be
anetwork one. The high failure environment had a 20% prob-
ability of failure events with the same distribution between
network and machine failures. Proposers have a chance to
randomly fail every time their state updates. Nodes that are
only acceptors check whether or not to fail every time they
finish processing a message.

These performance numbers are fairly reasonable in
the low failure case, since a single machine is handling all the
nodes and routing. Under stable conditions, our simulation
is robust to node and proposer increase as no results took
longer than 6 seconds to achieve consensus. When failures
are common and the system is under high stress, surpris-
ingly we found the introduction of more proposers to be
much worse for performance than increasing the number of
nodes. We expected performance to generally degrade as the
number of nodes or proposers increased, since there would
be more opportunities for failure and more communication
needed to achieve consensus. These graphs mainly corrobo-
rate that expectation, but with some peculiar differences.

Jackson Lallas and Siddhartha Prakash; https://github.com/sidscrazy/Paxos

B Performance with Increasing Node Count - Low Failure Rate

Average Consensus Time (Seconds)
w

Figure 3: Node Scaling with 5% failure probability.

Performance with Increasing Proposer Count - Low Failure Rate
08

e o e
[Y 3

Average Consensus Time (Seconds)
°
=

0.3

Proposers

Figure 4: Proposer Scaling with 5% failure probability.

1 Performance with Increasing Node Count - High Failure Rate

Average Consensus Time (Seconds)

Figure 5: Node Scaling with 20% failure probability.

Figure 4 presents an extremely counter-intuitive re-
sult that more proposers can increase performance in low
failure environments. Lamport’s paper warns against the
opposite effect, where multiple proposers can keep interfer-
ing with each other and the algorithm never converges. We
believe that this effect is a result of how we handle proposers
and may not generalize to other Paxos implementations. In
our simulation, if proposer A receives a proposal from some
other proposer B, A will behave identically to an acceptor for
the lifetime of B’s proposal. Since many processes are racing

https://github.com/sidscrazy/Paxos

The Paxos Algorithm, When Visualized, is Actually Pretty Simple

1 E’erformance with Increasing Proposer Count - High Failure Rate

11549
11.04
105

10.0 4

Average Consensus Time (Seconds)

0 1 2 3 4 5 6 7 8 9
Proposers

Figure 6: Proposer Scaling with 20% failure probabil-
ity.

to be the first to get a proposal out and proposers rarely fail,
the downward trend makes sense.

Figure 6 demonstrates that environments with many
proposers are especially vulnerable to high rates of failure.
When there are 3 or more proposers, our system did not reach
consensus consistently. While this is consistent with Lam-
port’s warning against many proposers, it is strange that we
get a performance boost in the low failure case. We believe
that this should be further investigated in other implementa-
tions of Paxos, as it is possible that the severe degradation
under stress or the performance boost with reliable systems
are artifacts of our failure simulation design.

4 CHALLENGES AND FUTURE WORK

Simulating node failure was difficult to design. Our first
attempt had all nodes regardless of role attempt to crash
after processing a message, and for proposers to attempt to
crash after sending prepare or propose messages as well. This
seems like a good idea in theory, since maybe work being
done by a node is correlated with the chance to crash in
production environments. However, as we scaled the number
of nodes up we found that our simulations were exploding in
length. Since proposers process significantly more messages
in the form of acks to prepare and propose messages, as
the number of nodes go up the proposer failure probability
goes up dramatically. With n nodes and p probability to fail,
there is a minimum a 1 - (1 - p)" probability of failure when
trying to achieve consensus, as the proposer needs at least
half of the nodes to give a positive acknowledgement for
the prepare and propose phases. Concretely with n = 25 and
p = .2, there is over a 99% chance for the proposer to fail
when trying to reach consensus. As a result, we modified

CS244b 20, June 2020, Stanford, CA

our implementation so that proposers only crash right after
sending a prepare or propose message.

Our current implementation is not very optimized.
On a simulated machine failure the proposer will lose all

state pertaining to prepare acks and current votes that it
has received, forcing it to start over at the next round when
it comes back online. We also do not have a way to check
that a vote has failed and then immediately try again in
a new round. For instance, if a proposer receives over n/2
acks that reject a prepare message that proposer should just
try again incrementing their round number. Our current
implementation only moves on to the next round after a
timeout has occurred.

Time permitting, we would also have liked to make a
dynamic visualization similar to RaftScope. Though we think
our visual tool is an effective way to produce various Paxos
transcripts under different conditions, a view of the nodes
themselves and packets traversing a network would be a very
effective visual aide. Thankfully, our current implementation
has all the infrastructure necessary to be plugged into a
visualization library to produce such a visual, and that would
be the first step if the project were to be extended.

Finally, we wanted to design much more expressive
test cases. In our initial design it would have been possible for
the user to specify events in the simulation on the granularity
of "Proposer 1 will fail after receiving the third prepare - ack.
Our simulation in contrast is completely non-deterministic.
Failure parameters can be tuned to make some transcripts
more likely than others, but the user currently cannot enter
some constraint that the simulation must meet.

5 CONCLUSION

It turns out that Paxos is not so bad after all. This project
helped us get a much deeper understanding of the Paxos
algorithm and hopefully the visualization tool we created
can be a first step to making the algorithm more accessible
at large. Most of the bugs we encountered from this project
were not rooted in the operation of Paxos, but instead classic
problems of interprocess communication and distributed
systems: managing locks, packet switching, race conditions
between various processes, and the like. We believe that the
future of Paxos will broadly be convergence on common
tenets of implementing the algorithm and understanding
how it operates, of which we hope that our project will play
some small part in.

REFERENCES

[1] L. Lamport. Paxos made simple. 2001.

	1 Introduction
	2 Paxos and Our Implementation
	3 Performance Analysis
	4 Challenges and Future Work
	5 Conclusion
	References

