
Publisher/Subscriber Service
Xiao Xin

Stanford University
xxin@stanford.edu

Chi Zhang
Stanford University

zcdirk@stanford.edu

Abstract—Publisher/Subscriber (Pub/Sub) is an
asynchronous message-oriented service that serves as
the backbone of contemporary distributed systems.
In many cases it is used to decouple the functions
of a massive monolithic application by aggregating
multiple smaller yet more cohesive services. Being
such a critical component to distributed systems,
Pub/Sub services should also be scalable so it could fit
the requirement of the services that depend on it. This
project aims to replicate the functions of a Pub/Sub
service with the capabilities to horizontally scale onto
multiple machines to better serve the distributed
systems it supports.

1. Overview
Intuitively, a Pub/Sub system has two com-

ponents: publisher and subscriber. If a publisher
knows what clients are its subscribers, messages
will be delivered as requested. However, such de-
sign could be troublesome once the number of
publishers and subscribers increases, total numbers
of connection between publishers and subscribers
increases exponentially, which would make the
system highly coupled and barely manageable. To
resolve the concern, broker, a middleware to decou-
ple relations between publishers and subscribers, is
introduced to the system.

Publisher

Broker

Subscriber

Publish
Stream

Subscribe

Figure 1. Pub/Sub System Logical Model

As the figure has shown, with broker in place,
publisher and subscribers would only keep track of
where the broker is and describe the action it wants
to perform to it. The Pub/Sub service designed and
implemented in this research serves as the broker
in the logic model. It offers the following 2 APIs:

• Publish: A client publishes a message of a
certain topic to the broker, then the broker
will tell the publisher whether the push is
completed.

• Subscribe: Clients subscribe to topics from
the broker, then the broker will push streams
of messages under the requested topics to the
subscribers.

Researchers started off with a primitive mono-
lithic gRPC[1] implementation of Pub/Sub on a
single machine. Using it as a foundation, the de-
velopers then designed sidecar services to assist
replication along with single-machine server. For
different use cases, Pub/Sub service is implemented
to scale up in the following modes:

• Master-slave
• Leader election using Raft[5]

For each replication mode researchers applied
multiple rounds of simulation and load testing us-
ing docker-compose[2]. Each node in the cluster
restricted to use 0.5 unit of CPU and 2GB of
memory, the cluster is incrementally loaded to host
2000 clients simultaneously, and finally each client
is supposed to receive around 20 messages each
round and it is supposed to finish receiving all the
messages within 1 second.

The goal of this project is to compare how differ-
ent replication schemes affects the performance of
a distributed Pub/Sub system; hence, for simplicity
all implementation only handles storage at memory



level, no data is persisted any time in the lifecycle
of a server process.

2. Single-Machine
The single machine implementation uses a

thread-safe map internally to manage topics and
subscribers. Each subscriber is put into its own
thread1. Every time a message is published, broker
will first deliver the message to the subscriber
threads of the message topic, and thereafter the
message will be transported to clients in each
thread, as shown in Figure 2.

msg 1 msg 2

topic 1 topic 2

sub 1 sub 2 sub 3

Figure 2. Single Machine Model

Figure 3. Single-Machine Performance

Figure 3 demonstrates the performance of a
single-machine service throughout load-testing. In
average a single-machine service could finish a
round of messages within 50 milliseconds. Several
clients were blocked in the process and timed out;
one possible reason could be that there is only
one simulation process, so the client threads were

1Service is implemented in Go[3], where a thread is a go-
routine.

locked, or maybe neglected, during user context
switching. The issue should be negligible since
the overall time-out rate is less than 0.5%. The
researchers later applied load-testing using the same
setup to find out the maximum capacity of this
implementation, and statistics showed that such a
service could be handle 20000 clients with roughly
3% timeout rate.

3. Replication
Although single-machine implementation could

achieve acceptable performance, its capacity upper-
bound is strictly limited by the computing power
and storage space of the machine hosting it, and
one must upgrade the hosting machine to scale
up, which could be rather expensive. Following
implementations provides ways to scale up the
overall service capacities of the system by replicat-
ing and coordinating service process onto multiple
machines. The machines involved in a distributed
Pub/Sub systems are called nodes, and all nodes
form a cluster that implements the functions of
Pub/Sub systems.

3.1 Master-Slave
In master-slave cluster, a node is either a master

or a slave. There is one and only one master in
a cluster; master has no master to itself but slaves
always have either a master or another slave as its
master. Together all these nodes forms a tree-like
topology with the root of the tree being the master
of the cluster.

In this mode each node has a sidecar service
to assist master-slave replication. Upon initiation,
slaves post a request to its master’s sidecar service
to register as a known slave.

Masters and slaves handle subscribe action just
as single-machine implementation. Therefore, the
system could easily increase reading throughput
linearly by adding more nodes into the cluster.

For publish, a slave would propagate the message
to its master until the message reaches the master
of the cluster. Once received the message, the
master would broadcast the message to all its slaves
through their master-slave sidecar service, and then
perform a publish action to its subscribers same
as single-machine service. For slaves, they each
manages a thread to listen to confirmed publish



messages from its master, publish the message to
its subscribers, and keep relaying the message to its
slaves.

Since master-slave cluster forms a tree, one of
the proposed design is to let nodes reserve a
special topic for its slaves, so the slaves can just
subscribe to the special topic to relay messages to
their subscribers. However, the implementation is
not adapted eventually for the following two rea-
sons: first, developers have to introduce a guarding
scheme to prevent users from intercepting system
messages in reserved topics; second, the messages
in reserved topic will have to be serialized at master
to include metadata such as topic name and then
deserialized at slaves, which introduces unnecessary
operations.

master

slave-0 slave-1

slave-2

Figure 4. Master-Slave Cluster Topology

The researchers set up a cluster with 4 nodes
organized as figure 4 for load testing. This orga-
nization includes all potential master-slave relation
that could exists in master-slave mode, which could
provide a more comprehensive demonstration of
cluster performance.

Figure 5. Master-Slave Performance

Figure 6. Single-Machine/Master-Slave average response la-
tency

Figure 5 and 6 provide an overview of the capac-
ity of master-slave Pub/Sub cluster. The statistics
reflects here that, comparing to single-machine im-
plementation, master-slave is slightly faster and has
fewer timed out connections throughout the testing
process. The testing program evenly distributed
clients among nodes in the cluster, therefore caus-
ing each node to handle only a quarter of load using
the same amount of resources as the single-machine
instance. The researchers actually expected master-
slave architecture to be slower due to potential
latency that may caused by message propagation
through network. But since the testing cluster is
hosted as containers sharing a virtual network on
a single machine, the effect of network latency
appears to become negligible. This finding could
be helpful to users when they apply Pub/Sub in
production, as they might be able to use master-
slave mode to dispatch or collect data rapidly across
regions with the leverage of reliable and performant
network service, such as Google Could’s high-
performance premium tier network solution[4].

Master-slave architecture demonstrate decent po-
tential, but its performance is in trade of reliability.
If one node were to go down, all of the node’s
slaves and sub-slaves will lost sync with the rest
the cluster at the same time. Besides, a master-slave
cluster’s performance is strongly correlated to its
topology. If the cluster tree is too deep, or some
of the nodes serving too many clients, the cluster’s
performance could be significantly affected. Only
a balanced-tree of reasonable height with clients
evenly distributed among nodes would make the
cluster perform the finest.

3.2 Raft
In master-slave mode, once one node fails, the

failure would be cascaded all the way down to



all of its slave-descendants. To resolve this con-
cern, the Pub/Sub system must develop a way to
find a replacement once its master went offline.
Therefore, the researchers implemented a leader-
election protocol on top of Pub/Sub system using
Raft, which provides a less performant yet more
reliable replication scheme for Pub/Sub. In this
mode, all nodes are identified as peer, and the all
could become the leader of the cluster once they
win a majority of the ballots in leader election. The
non-leader nodes are known as follower, and if they
want to become the leader of the node they would
first identity themselves as candidate to initiate an
election.

3.2.1 Implementation basics
On initiation, all the nodes start with the role

of Candidate, and then start the election process.
Each node will sleep a random time to avoid leader
election conflict and then send out a leader-vote
request if no others have done so. The node then
collect the ballots from all the other peers, and
once the node received majority vote grants, it will
upgrade itself to leader. Upon upgrading to leader,
the leader will send out initial RPC requests to all
the other nodes to let others know about the leader.

peer-0 peer-1

peer-2 peer-3

Figure 7. Raft Cluster Topology

After leader election, Raft cluster will be in a
state shows in figure 7. The cluster will operates
similarly to master-slave mode: all nodes in the
system can handle subscribe request independently,
and all publish requests will have to go through
the leader. But to confirm the publish operation,
leader must go through the some extra process to
make sure the write request is accepted by most of
the followers. Also, the leader needs to send out
heartbeat request to let all the followers know that
the leader is still active.

3.2.2 Advantages
Raft replication model has the following advan-

tages over single machine model and master-slave
model:

• Fault tolerant: Single machine model cannot
accept any crashes. Master slave machine can
only accept slaves to crash. With Raft imple-
mentation, the service can still work fine as
long as the majority of the nodes in the cluster
are still alive. Also, after the crashed nodes
recovered, they can catch up automatically and
work as normal followers again.

• Auto scalable: In Raft model, Pub/Sub service
allows the users to add new nodes into the
cluster without rebooting the ones that already
started. As long as the new node knows all the
addresses of the existing nodes, it will send
out a vote request on initiation. If the existing
nodes receives a request with a candidate id
that it has never seen, it will reply the vote
request with fail, and then start a new connec-
tion with this node. This is pretty handy for
the users, as they can add any number of new
nodes whenever they want.

• Log: In single machine mode and master-
slave mode, the messages are sent in the air,
and will not be persisted in the log. While
in Raft mode, as the leader needs to make
sure all the followers are in the same state,
nodes will persist all the message history in
log. This makes it possible if the clients want
to check the message history. Also, one more
thing to point out here is after the crashed node
recovers, it will catch up the logs and resend
those messages the node received while it is
down.

3.2.3 Optimization
In the process of development, the researchers

tried different strategies to improve the efficiency.
And finally decided to apply the following strate-
gies to Pub/Sub service:

• Discard the commit related fields and imple-
mentations in Raft. As we previously said,
all implementation only handles storage at
memory, there will be no data commit in the
process.

• Create different threads for each heartbeat
RPC and request vote RPC. In the first version,



all the RPCs in the service are implemented
in a blocking way so that the researchers can
make sure all the processes come in sequence
and are working as expected. However, in per-
formance test, the researchers find that there
maybe some nodes in the cluster are slower
than the others and thus, the leader will be
blocked by the slowest node in the cluster.
Then the researchers decided to create a new
thread for heartbeat request and vote request,
which came out to improve the efficiency a
lot. The researchers also tried to create a new
thread for append entry request. But during
tests, the subscribers may receive messages
out of order, which is not acceptable. So the
researchers decided to only create new threads
for the sidecar transactions.

• Start the initial election immediately rather
than wait for the timeout. In Raft implemen-
tation, the nodes only start a new election if it
times out. This will be meaningless when we
initialize the cluster. In this implementation,
the node will send out a vote request once it
finishes the setup and after a random waiting
time. Which reduce the initialization time a lot.

• Wait a random time before send out a vote
request. In the first implementation, the node
will send out the vote request once it is timed
out. However, during tests, the researchers
found that the nodes may be a contention
scenario during election process. So in the later
version, the node will send out the vote request
only after waiting a random time (between 0
and heartbeat timeout).

3.2.4 Performance
In order to test the performance, the researchers

organized a 4-node cluster for testing as figure
7. In additional to performance benchmarking, the
researchers first applied a fault tolerance testing to
validate leader-election by taking down a node in
the cluster to see if the Pub/Sub system could still
function. In most of the cases, leader nodes are
taken down in order to observe how the cluster
would re-elect a leader. All experiments suggests
the leader re-elections were successful although
some may cause significant latency during the pro-
cess. Once the fault tolerance is confirmed to be
successful, the researchers proceeded with perfor-

mance benchmark.

Figure 8. Raft Performance

Figure 9. Single-Machine/Raft average response latency

Same in master-slave mode, the clients were
evenly distributed onto each node in the cluster.
However while testing, the researchers found that
the system would be frequently stalled due to Raft-
related heartbeat and synchronization operations,
if the size of test increment were small. This
effect can be cancelled out by extending heartbeat
interval, but doing so would make the system
behaving more like master-slave mode. Overall,
the researchers decided to resolve the issue by
increasing the test sample size in aim to reduce the
total number of test iterations and internal leader
elections.

As the graphs have shown, capacity-wise Raft-
mode is still capable of hosting large number of
clients. However, the average latency is over 50%
slower than that of a single machine, and timeout
rate had also hiked.

4. Conclusion
Scaling remains one of the hardest problems

in computer science. Through this project, the re-
searchers learned that different scaling approaches
each has its own comparative advantages: master-
slave architecture could be one way to extend sys-
tem performance; meanwhile leader election could



be another approach to improve system reliability.
However, learning the advantages is not yet enough,
the researchers also developed some thinking on
how Pub/Sub and scaling could be further opti-
mized in future.

First, the testing strategy adapted throughout
the research mostly focused on subscribing side.
Subscribe have to keep a long-lasting socket with
Pub/Sub servers, but publish is more of a short-
lived request but could take place frequently. Given
current architectures, where all publish requests are
essentially routed to a leader machine, when the
publish traffic is at high level the performance of
the system could be very different. Hence, how to
scale up publish requests still remains an interesting
problem that can be better addressed.

Second, after this project the researchers have the
idea that the future of scaling solutions should be
hybrid of multiple approaches. The essence of a
distributed system is the topology it forms; there-
fore the system users should be able to manipulate
such structure however they want to most efficiently
solve the problems they need to tackle. Hence, if
a distributed system solution could be configured
to easily adapt multiple replication strategies, it
is likely to be preferred by more users. While
developing this system, the researchers attempted
to extract the scaling functions as a set of stan-
dard interfaces, and the side-car services could just
implement the interface. If this goal were to be
achieved, the Pub/Sub system the researchers have
designed could be able to provide multiple means
of replication strategies on a single node. But this
idea was eventually unapproachable due to the fact
that Pub/Sub implementation needs to be written,
such as rerouting publish requests to masters, in
different replication strategies so that the strategy
could work. In order to achieve the proposed idea,
the Pub/Sub base API should be better designed
so it has the flexibility to fit the requirements of
replication strategies.

Finally, there are also a few features proposed
but not yet implemented due to time constraints.
The researchers plan to leave them for future de-
velopment:

• Authentication checking: Currently, the im-
plementation only allow one time subscribe,
and the user don’t need to provide any identifi-

cation information. In the future, we may con-
sider to add authentication checking in the ser-
vice. Before subscriber subscribe a topic, the
identification information is checked and the
publisher may decide to publish the message
to specific subset of subscribers that should
have the permission to the message.

• Client revive: In current version, if a client
lost connection with the server, it will miss the
message in the meantime and have no way to
retrieve those messages. After authentication
checking is implemented, we may consider to
store the last reply from the subscriber, and
retry sending the messages after the subscriber
lost connection. If the subscriber login again
with the same account, then it should first
received all the messages during the time that
it is offline.

• Message history query: It will be handy if the
subscribers can check all the message history
based on the timestamp and topic. So that the
client will not need to implement a client side
log if they do need the history. We may also
consider to implement this functionality.

References
[1] The Linux Foundation. grpc - a high-

performance, open source universal rpc frame-
work. URL https://grpc.io/.

[2] Docker Inc. Overview of
docker compose. URL
https://docs.docker.com/compose/.

[3] Google LLC. Go is an open source program-
ming language that makes it easy to build
simple, reliable, and efficient software., . URL
https://golang.org/.

[4] Google LLC. Google cloud -
network service tiers, . URL
https://cloud.google.com/network-tiers.

[5] Diego Ongaro and John Ouster-
hout. In search of an understand-
able consensus algorithm. URL
https://raft.github.io/raft.pdf.


