

1

Abstract

In this project, we present a highly consistent, fault
tolerant distributed key-value store. It adapts the raft
consensus algorithm broadly in the system and
supports concurrent transactions across shards. Each
operation on the store is handled by a set
of coordinators as a raft group. The keys in the store
are partitioned across shards and each shard
maintains multiple replicas forming their own raft
groups. The distributed transaction across shards is
achieved using two-phase commit protocol with
two-phase locking to guarantee atomicity and
serializability.

1. Introduction
Highly available, consistent, fault-tolerant

key-value stores are at the center of modern
applications and distributed database systems. Most
NoSQL systems [1,2] inspired by Amazon Dynamo
[1] does not guarantee strong consistency in favor of
availability due to the trade-off described in the CAP
theorem [3] or the more generalized PACELC
theorem [4]. However, more recent systems, such as
Spanner [5], CockroachDB [6] and TiKV [7], employ
the mechanism of using consensus protocols to
enforce consistency across multiple replicas of the
data and mitigate the non-availability.

Motivated by the idea, this project focuses on
building a distributed key-value store that is strongly
consistent and fault tolerant 1 . It uses the raft
consensus algorithm [8] to ensure fault tolerance in
both coordination and data replicas. In addition, we
adapt two-phase commit (2PC) [9] and two-phase
locking (2PL) [10] to support multi-shard transactions
that guarantee atomicity and serializability.

The paper is structured as follows. Section 2
presents the system design and section 3 describes the
implementation. Section 4 evaluates the performance

1https://github.com/SCPD-Project/raft-kv-store

of the key-value store and section 5 concludes the
paper.

2. System architecture
In this section, we present the architecture of the

system as shown in Figure 1, consisting of the
following components: coordinator, data store and
client.

2.1. Coordinator

The coordinator acts as a transaction manager to the
key-value store. It is responsible for executing client
requests and exposes the operations on the data store
to the clients via APIs described in section 3.1. To
ensure fault tolerance, the system manages 2f + 1
coordinator replicas forming a raft group, where f is
the number of failures that a raft group can tolerate.
The raft consensus algorithm [8] ensures that
coordinators are always available as long as the
majority of the replicas in the clusters are available.
For every request sent by clients, it reaches the leader
of the coordinator. The coordinator then maps the
request to the corresponding shards using a simple
hash function, which equally distributes the keys
across shards. The coordinator leader is also
responsible for figuring out the leader of each shard

RAFT based Key-Value Store with Transaction Support

Chen Chen, Varun Kulkarni, Supriya Premkumar and Renga Srinivasan

Stanford University

Figure 1: Architecture of raft based key value store

2

and relays the request. In addition, the finite state
machines of transaction are replicated among the
coordinator replicas using raft.

Besides, the coordinator helps coordinate
transactions on the key-value store described in
section 2.2. When the coordinator leader receives a
transaction request, it initiates the communication
following the 2PC protocol [9] to the relevant shards
and drives the transaction until its completion. In the
case of coordinator leader failure during the
transaction, a newly elected leader will help recover
the transaction. This ensures that the 2PC never gets
stuck and every transaction gets a closure eventually.

2.2. Data store

In the data store, the key-value pairs are partitioned
into a configurable number of shards. Each shard
consists of 2f+1 replicas as a raft cluster. Within each
replica, the data are stored in an in-memory map and
being periodically persisted to disk using Boltdb [11]
for efficient snapshot and recovery.

In the current design, we implement a customized
concurrent hash map (section 3.8) that has keys of
string data type and values of integers. However, this
could be easily extended to support any datatype.
Similar to the coordinators, the raft consensus
algorithm is also used to guarantee the strong
consistency of the key-value states among the
replicas.

2.3. Client

Client provides a user interface to interact with the
coordinator. It is also responsible for routing to the
coordinator leader. The details are described in
section 3.2.

3. Implementation
In this section, we focus on the implementation

details of the key-value store.

3.1. Overview

The client communicates with the leader of the
coordinator through a HTTP protocol and the
coordinator leader communicates with the data store
using RPC protocol. The data are encoded as protocol
buffer [12] for efficient transmission. Golang’s native
net/http and net/rpc packages are used to build
the transport channels for the system.

For raft implementation, we evaluated several
popular raft libraries in Go. Eventually, we zeroed in
on the hashicorp/raft [13], that provides neat
abstractions and makes it easy to build applications on
raft. The raft library provides a callback function that
gets called once raft entries are committed. At that
point, the commands can be executed on the finite
state machine. The library also provided callbacks for
periodic snapshots and log compaction that allows the
key-value store to be persisted on disk via these
callbacks periodically.

3.2. Client implementation
Client stores the metadata of the coordinator leader

in cache based on the last successful request. In case
the leader changes and client reaches one of the
coordinator replicas, the replica will send its leader
metadata along with a 421 HTTP status to indicate a
leader redirection. Client then updates its own leader
information and retry its request with the new
coordinator leader. In case of all other errors showing
the leader is not available, client iterates its known list
of coordinator nodes in a round-robin manner until it
finds the correct leader or gets redirected. This
process could be extended and optimized via
automatic service discovery, which is outside the
scope of the current implementation.

Below we present the supported operations in the
client implementation.

GET, with syntax get <key>, fetches the value
of a provided key. It returns the value of the key if the
key already exists. Otherwise, an error of “key not
exists” is returned to the client.

SET, with syntax set <key, value>, sets or
overrides the key with the provided value. In some
cases, an error may be sent back to the client if the
coordinator finds the key is locked by other clients
before timeout. Besides, we also support conditional
set, set <key, value, condition>, so the
write is executed only if the condition is satisfied.
It is useful in ADD/SUB, XFER described later in this
section and coupled with optimistic locking described
in section 3.6 in practice.

DEL, with syntax del <key>, removes the given
key from the key-value store . Note that we make this
an idempotent operation, so it does not complain even
if the key does not exist.

TXN, with syntax txn <commands> end, sends
a set of simple operations including GET, SET and

3

DEL in a single transaction block to the coordinator.
Based on what is provided in commands, it applies
optimization rules to remove the redundant
commands before sending to the coordinator. For
example, if a client gives two SET operations on the
same key in a single transaction, the first SET
operation will be annihilated.

ADD, with syntax add <key, value> is used to
increase the value of the current key by a certain
amount. Internally, it splits the operation into two
stages, including the simple operation GET and a
conditional SET. In the first stage, it gets the current
value of the given key. In case the key does not exist,
it shows the error to the client. Otherwise, it follows
with a conditional SET operation in the second stage
that guarantees that the write is executed only if the
value remains the same as the one obtained in the first
stage.

SUB, with syntax sub <key, value> is an alias
of add <key, -value>.

XFER, with syntax xfer <fromkey, tokey,
amount>, transfers a specified amount from source
key to destination key. It is similar to ADD/SUB
operations, but the keys involved can be across
multiple shards. It uses two TXN operations as basic
building blocks, one read-only transaction followed
by two conditional SETs. In the first read-only
transaction, the client requests values for both the
keys. Besides, we check the value of the source key is
no less than the transfer amount specified to imitate a
real transfer between two bank accounts. If the
validation fails, the transfer is then aborted. Otherwise,
two conditional SETs are sent in a single transaction
to update the values of both of the keys. More details
will be described in section 3.6.

3.3. Simple operations

We classify SET, GET and DEL as simple
operations as they involve a single key. When the
coordinator leader receives the request, it finds the
destination shard, discover the leader of the shard and
relays the request. Except the GET request, the data
store then tries to commit the entry in the raft log.
Once the log entry committed, i.e. it is successfully
replicated across replicas, the key-value store
executes the corresponding command on the
in-memory map.

3.4. Transactions

For each transaction request, the coordinator
generates a unique transaction ID, txid. The
coordinator maintains a map to keep track of all the
transactions indexed by txid. The map acts as a
finite state machine for the coordinator, which tracks
the states of each transaction (prepared, committed,
abort) as shown in Figure 2. Every operation on the
map is replicated by raft across the coordinator
replicas.

The transaction requests are handled by the
coordinator with 2PC [9] and 2PL [10] across
multiple shards. As in a typical two-phase protocol,
the prepare phase is to ensure the shard leaders
(cohorts) are available and ready to execute the
transaction. The shards respond to the coordinator
with the prepared message if it 1) acquired all the
locks for the keys in the transaction (section 3.8), and
2) satisfied the conditional checks on the operation, if
exist (section 3.6). Once the coordinator receives
prepared messages from all the cohorts, it sends a
commit message to commit the transaction. Otherwise,
it sends an abort message to all the cohorts and
releases the locks.

3.5. Read-only transactions

A read-only transaction is a transaction that consists
of only GET operations on the key value store. This
can be on a single shard or across shards. Since the
GET operations does not alter the key value store,
there is scope for optimization. In our implementation,
the coordinator figures out if the transaction is
read-only and marks it in the prepare message to the
cohorts. The cohorts return the values of GET
operations in the response. Once the coordinator
receives responses from all the cohorts, it skips the

Figure 2: Two-phase commit diagram of a transaction request

4

commit phase and replies back to the client
immediately. This might result in stale reads on the
client side. However, in our implementation the
read-only transactions are only used for compound
operations like ADD, SUB and XFER that support
conditional set operations. This helps alleviate the
problem of stale reads and the client can retry to
operate on the latest data.

3.6. Optimistic locking

As described in section 3.1, compound operations,
XFER, ADD and SUB, consist of a read-only
transaction followed by a conditional SET transaction.
In order to ensure compound transactions are atomic
and externally consistent, the second transaction must
always operate on the latest data. In our
implementation, this is achieved by means of
coupling conditional SET with optimistic locking [14].
It can be also treated as a distributed
CompareAndSwap operation. During the prepare
phase of 2PC, the condition is validated by cohorts
when fetching locks as described in section 3.8. The
cohort agrees to execute the transaction and sends
back parepared message to the coordinator only if the
condition holds.

Figure 3 demonstrates an example that two clients
simultaneously request for a transfer operation on two
keys. In this case, Client 1 succeeds because it passes
the conditional SET. Client 2 lags behind and fails in
the conditional SET but will eventually succeed on
retry.

3.7. Transaction recovery and garbage collection

 As discussed in section 3.4, coordinator replicates
its state using raft to all its replicas. When a new
leader is elected, it can recover any pending
transactions by consulting its state. In our
implementation, we listen for leadership changes in a
separate background thread. When the raft notifies

leadership changes, the new leader scans its map and
recovers all transactions that are not in committed
state by sending appropriate abort/commit messages
depending on the transaction state.

In addition, the same background thread garbage
collects the data of all the committed transactions to
prevent the coordinator finite state machine from
growing infinitely [9].

3.8. Concurrent map

 We implemented a concurrent map to both support
concurrent writes and 2PC transactions. To minimize
the waiting time of locking, we adapt the fine grain
locking strategy, that is, one global lock for the entire
map and one local lock for each key-value pair
respectively, all of which are readers-writer locks.
The idea is, once the local locks are obtained, the
global lock should be lifted at the earliest possible
time to unblock other transactions. Note that the
waiting time of 2PC is not negligible, in that it is
spanned across two phases, the prepare and
commit/abort including one round-trip data
transmission between the coordinator and cohorts.
Table 1 shows a performance benchmark comparison
of concurrent writes between our concurrent map
implementation and a map with a single lock only. It
is observed that while the writes running time grows
exponentially as the waiting time increases in the
naive implementation, it remains the same in the fine
grain implementation. Even if the network latency is
as low as 1 ns, it shows significant improvement in
efficiency, ~ 6.4 times.
TryLocks and Abort are two important

interfaces implemented to serve the purpose of 2PC.
TryLocks tries to acquire the global and local locks
with two configurable timeouts, GlobalTimeout
and LocalTimeout. The new keys, if there are any,
are created with a temporary tag with locks attained.
Besides, all the keys in the transaction are also tagged
with the txid. TryLocks is determined to be
successful when 1) all the locks are acquired before
timeouts, and 2) all the conditional checks described

Waiting Time Single lock Fine grain locks
1 ns 2,339 ns/op 364 ns/op
1 μs 7,577 ns/op 443 ns/op
1 ms 1,214 μs/op 408 ns/op

Figure 3: An example how optimistic locking works when two
clients send XFER requests simultaneously

Table 1: Performance benchmark comparison

5

in section 3.6 are satisfied. Otherwise, the map and
relevant locks are rolled back to the state before
TryLocks was called. In either case, the global lock
is lifted as soon as possible. Abort is called when the
coordinator decides to abort the transaction. It uses the
temporary tag to distinguish the new and pre-existing
keys. The former ones are removed, and the later ones
are unlocked only if its attached txid matches with
the transaction. This check is necessary as it
guarantees that the locks are only lifted by the same
transaction that attained them.

We started off with both the GlobalTimeout
and LocalTimeout as constant but found that it
can lead to deadlock when multiple transactions for
the same keys happen to attain mutually exclusive
locks across shards. To resolve the issue, we set
GlobalTimeout as a fixed constant but
LocalTimeout as randomized duration, for each
transaction, in the same order of one round-trip data
transmission time. In this case, even if the deadlock
occurs in the first place, once the shorter ones time out,
the transaction with the longer timeout can eventually
acquire the locks and proceed to the next phase.

4. Performance
This section presents an evaluation that establishes

a baseline system latency and a fault tolerant analysis

that explores the impact of leader failure. For
experiment, we launch our system with three docker
containers to simulate the server nodes in practice.
Each container consists of three processes, one for the
coordinator and the rest for two different shards. In
addition, there is one more container for the clients to
request to the system.

4.1. Latency

To measure the latency of each operation supported,
a fixed number of clients are set up and each of them
generates new requests to the coordinator once it
receives the feedback of the last request for a duration
30 s. After it finishes, the latencies of each request are
gathered across clients over the duration to form a
distribution of latency. We examined the case of 1, 2,
5, 10, 20, 50, 100 and 150 concurrent clients to see the
impact of the number of clients on the latency.

Figure 4(a) illustrates the latency of GET and SET
operations where no same keys are requested at the
same time on the servers. It is seen that the request
latency grows for both GET and SET as the number of
clients increases. The SET operation takes longer to
respond than GET, as is expected with readers-writer
locks mentioned in section 3.8. Besides, the gap
between the average and 95th percentile response time
is larger for SET than GET, indicating a heavier tail in

(a) (b)

Figure 4: Latency of each operation
(c) (d)

6

the latency distribution for writes operations. Figure
4(b) shows the impact of multiple clients sending
SET requests on the overlapped keys. Although the
average and tail response time increase when key
conflicts happen, the increment is not as large as the
difference between GET and SET.

Besides, we also investigated the latency of
read-only vs a typical 2PC transaction. Both types of
the transactions are guaranteed to be across two
shards in this experiment. As shown in Figure 4(c),
2PC transaction puts a great burden due to its
coordination algorithm compared to the read-only
transactions that only involves prepare/prepared
phase. This is, however, indeed a tradeoff between the
availability and richness of transaction semantics as
expected. The tendency becomes more obvious when
the client size grows. When the number of clients
approaches 150, both of the average and 95 tail
latency reach 5 s, which is the HTTP request timeout
set for the clients. We also explore the latency of
operations ADD and XFER that uses optimistic
locking as shown in Figure 4(d). Given that both of
the operations consist of two transactions internally
and require multiple rounds of communication as
mentioned in section 3.4, even the ADD operations
that involve a single shard are relatively expensive to
support.

4.2. Fault tolerant

In this experiment, 5 clients are launched
concurrently, of which 4 clients keep sending GET
requests and the rest one keeps sending SET requests.
We stop the docker container containing the
coordinator leader 10 s after the experiment starts in
order to simulate a node failure. Figure 5 shows the
traffic rate before and after the container stops. With
the stop of the container, both GET and SET traffic
drop down to zero for less than a second and then
recover to the normal state, which is as anticipated for

a fault tolerant system. The slight decrease of traffic
rate after recovery can be explained by the fact that
the shard leaders happened to be in the same container
as the coordinator before the failure but spread across
containers after the leaders election.

5. Conclusion and future work
This paper presents a strongly consistent, fault

tolerant transactional key value store using Raft and
2PC. A few improvements in the areas of service
discovery to find leaders of raft groups, consistent
hashing to support equal redistribution of keys during
configuration changes can improve the efficiency and
robustness of the system. Our performance tests also
indicated that 2PC with presumed commit
optimizations is still slow. To further improve
performance, we can extend the system to support
Google’s Percolator transaction model [15] which is a
variant of 2PC. Overall, the project gave us an
opportunity to understand the trade-offs and
challenges involved in implementing a scalable
distributed system.

Acknowledgement

We would like to express our thanks to David
Mazières and Jim Posen for constant guidance and
support throughout the quarter.

References
[1] Sivasubramanian, Swaminathan. "Amazon dynamoDB: a

seamlessly scalable non-relational database
service." Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data. 2012.

[2] Cassandra, Apache. "Apache cassandra." Website. Available
online at http://planetcassandra.
org/what-is-apache-cassandra 13 (2014).

[3] Gilbert, Seth, and Nancy Lynch. "Brewer's conjecture and
the feasibility of consistent, available, partition-tolerant web
services." Acm Sigact News 33.2 (2002): 51-59.

[4] Abadi, Daniel. "Consistency tradeoffs in modern distributed
database system design: CAP is only part of the
story." Computer 45.2 (2012): 37-42.

[5] Corbett, James C., et al. "Spanner: Google’s globally
distributed database." ACM Transactions on Computer
Systems (TOCS) 31.3 (2013): 1-22.

[6] Taft, Rebecca, et al. "CockroachDB: The Resilient
Geo-Distributed SQL Database." Proceedings of the 2020
ACM SIGMOD International Conference on Management of
Data. 2020.

[7] https://tikv.org/docs/3.0/concepts/overview/
[8] Ongaro, Diego, and John Ousterhout. "In search of an

understandable consensus algorithm." 2014 Annual
Technical Conference (14). 2014.

Figure 5. Fault tolerant test showing recovery after failure

7

[9] Lampson, Butler, and David B. Lomet. "A new presumed
commit optimization for two phase commit." VLDB. Vol.
93. 1993.

[10] Bernstein, Philip A., Vassos Hadzilacos, and Nathan
Goodman. Concurrency control and recovery in database
systems. Vol. 370. New York: Addison-wesley, 1987.

[11] https://github.com/boltdb/bolt
[12] https://developers.google.com/protocol-buffers
[13] https://github.com/hashicorp/raft
[14] Halici, Ugur, and Asuman Dogac. "An optimistic locking

technique for concurrency control in distributed
databases." IEEE Transactions on Software Engineering 7
(1991): 712-724.

[15] Peng, Daniel, and Frank Dabek. "Large-scale incremental
processing using distributed transactions and notifications."
(2010).

