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Abstract 

 
In this project, we present a highly consistent, fault 
tolerant distributed key-value store. It adapts the raft 
consensus algorithm broadly in the system and 
supports concurrent transactions across shards. Each 
operation on the store is handled by a set 
of coordinators as a raft group. The keys in the store 
are partitioned across shards and each shard 
maintains multiple replicas forming their own raft 
groups. The distributed transaction across shards is 
achieved using two-phase commit protocol with 
two-phase locking to guarantee atomicity and 
serializability. 

1. Introduction 
Highly available, consistent, fault-tolerant 

key-value stores are at the center of modern 
applications and distributed database systems. Most 
NoSQL systems [1,2] inspired by Amazon Dynamo 
[1] does not guarantee strong consistency in favor of 
availability due to the trade-off described in the CAP 
theorem [3] or the more generalized PACELC 
theorem [4]. However, more recent systems, such as 
Spanner [5], CockroachDB [6] and TiKV [7], employ 
the mechanism of using consensus protocols to 
enforce consistency across multiple replicas of the 
data and mitigate the non-availability.      

Motivated by the idea, this project focuses on 
building a distributed key-value store that is strongly 
consistent and fault tolerant 1 . It uses the raft 
consensus algorithm [8] to ensure fault tolerance in 
both coordination and data replicas. In addition, we 
adapt two-phase commit (2PC) [9] and two-phase 
locking (2PL) [10] to support multi-shard transactions 
that guarantee atomicity and serializability. 

The paper is structured as follows. Section 2 
presents the system design and section 3 describes the 
implementation. Section 4 evaluates the performance 

 
1https://github.com/SCPD-Project/raft-kv-store   

of the key-value store and section 5 concludes the 
paper. 

2. System architecture 
In this section, we present the architecture of the 

system as shown in Figure 1, consisting of the 
following components: coordinator, data store and 
client. 

2.1. Coordinator 

The coordinator acts as a transaction manager to the 
key-value store. It is responsible for executing client 
requests and exposes the operations on the data store 
to the clients via APIs described in section 3.1.  To 
ensure fault tolerance, the system manages 2f + 1 
coordinator replicas forming a raft group, where f is 
the number of failures that a  raft group can tolerate. 
The raft consensus algorithm [8] ensures that 
coordinators are always available as long as the 
majority of the replicas in the clusters are available. 
For every request sent by clients, it reaches the leader 
of the coordinator. The coordinator then maps the 
request to the corresponding shards using a simple 
hash function, which equally distributes the keys 
across shards. The coordinator leader is also 
responsible for figuring out the leader of each shard 
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Figure 1: Architecture of raft based key value store   



 

2 

and relays the request. In addition, the finite state 
machines of transaction are replicated among the 
coordinator replicas using raft. 

Besides, the coordinator helps coordinate 
transactions on the key-value store described in 
section 2.2. When the coordinator leader receives a 
transaction request, it initiates the communication 
following the 2PC protocol [9] to the relevant shards 
and drives the transaction until its completion. In the 
case of coordinator leader failure during the 
transaction, a newly elected leader will help recover 
the transaction. This ensures that the 2PC never gets 
stuck and every transaction gets a closure eventually. 

2.2. Data store 

In the data store, the key-value pairs are partitioned 
into a configurable number of shards. Each shard 
consists of 2f+1 replicas as a raft cluster. Within each 
replica, the data are stored in an in-memory map and 
being periodically persisted to disk using Boltdb [11] 
for efficient snapshot and recovery.  

In the current design, we implement a customized 
concurrent hash map (section 3.8) that has keys of 
string data type and values of integers. However, this 
could be easily extended to support any datatype. 
Similar to the coordinators, the raft consensus 
algorithm is also used to guarantee the strong 
consistency of the key-value states among the 
replicas. 

2.3. Client 

Client provides a user interface to interact with the 
coordinator. It is also responsible for routing to the 
coordinator leader. The details are described in 
section 3.2. 

3. Implementation 
In this section, we focus on the implementation 

details of the key-value store. 

3.1. Overview 

The client communicates with the leader of the 
coordinator through a HTTP protocol and the 
coordinator leader communicates with the data store 
using RPC protocol. The data are encoded as protocol 
buffer [12] for efficient transmission. Golang’s native 
net/http and net/rpc packages are used to build 
the transport channels for the system.  

For raft implementation, we evaluated several 
popular raft libraries in Go. Eventually, we zeroed in 
on the hashicorp/raft [13], that  provides neat 
abstractions and makes it easy to build applications on 
raft. The raft library provides a callback function that 
gets called once raft entries are committed. At that 
point, the commands can be executed on the finite 
state machine. The library also provided callbacks for 
periodic snapshots and log compaction that allows the 
key-value store to be persisted on disk via these 
callbacks periodically. 

3.2. Client implementation   
Client stores the metadata of the coordinator leader 

in cache based on the last successful request. In case 
the leader changes and client reaches one of the 
coordinator replicas, the replica will send its leader 
metadata along with a 421 HTTP status to indicate a 
leader redirection. Client then updates its own leader 
information and retry its request with the new 
coordinator leader. In case of all other errors showing 
the leader is not available, client iterates its known list 
of coordinator nodes in a round-robin manner until it 
finds the correct leader or gets redirected. This 
process could be extended and optimized via 
automatic service  discovery, which is outside the 
scope of the current implementation. 

Below we present the supported operations in the 
client implementation. 

GET, with syntax get <key>,  fetches the value 
of a provided key. It returns the value of the key if the 
key already exists. Otherwise, an error of  “key not 
exists” is returned to the client.  

SET, with syntax set <key, value>,  sets or 
overrides the key with the provided value. In some 
cases, an error may be sent back to the client if the 
coordinator finds the key is locked by other clients 
before timeout. Besides, we also support conditional 
set, set <key, value, condition>,   so the 
write is executed only if the condition is satisfied. 
It is useful in ADD/SUB, XFER described later in this 
section and coupled with optimistic locking described 
in section 3.6 in practice.    

DEL, with syntax del <key>,  removes the given 
key from the key-value store . Note that we make this 
an idempotent operation, so it does not complain even 
if the key does not exist. 

TXN, with syntax txn <commands> end, sends 
a set of simple operations including GET, SET and 
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DEL in a single transaction block to the coordinator. 
Based on what is provided in commands, it applies 
optimization rules to remove the redundant 
commands before sending to the coordinator. For 
example, if a client gives two SET operations on the 
same key in a single transaction, the first SET 
operation will be annihilated.  

ADD, with syntax add <key, value> is used to 
increase the value of the current key by a certain 
amount. Internally, it splits the operation into two 
stages, including the simple operation GET and a 
conditional SET. In the first stage, it gets the current 
value of the given key. In case the key does not exist, 
it shows the error to the client. Otherwise, it follows 
with a conditional SET operation in the second stage 
that guarantees that the write is executed only if the 
value remains the same as the one obtained in the first 
stage.  

SUB, with syntax sub <key, value> is an alias 
of  add <key, -value>. 

XFER, with syntax xfer <fromkey, tokey, 
amount>, transfers a specified amount from source 
key to destination key. It is similar to ADD/SUB 
operations, but the keys involved can be across 
multiple shards. It uses two TXN operations as basic 
building blocks, one read-only transaction followed 
by two conditional SETs. In the first read-only 
transaction, the client requests values for both the 
keys. Besides, we check the value of the source key is 
no less than the transfer amount specified to imitate  a 
real transfer between two bank accounts. If the 
validation fails, the transfer is then aborted. Otherwise, 
two conditional SETs are sent in a single transaction 
to update the values of both of the keys. More details 
will be described in section 3.6. 

3.3. Simple operations 

We classify SET, GET and DEL as simple 
operations as they involve a single key. When the 
coordinator leader receives the request, it finds the 
destination shard, discover the leader of the shard and 
relays the request. Except the GET request, the data 
store then tries to commit the entry in the raft log.  
Once the log entry committed, i.e. it is successfully 
replicated across replicas, the key-value store 
executes the corresponding command on the 
in-memory map.  

3.4. Transactions 

For each transaction request, the coordinator 
generates a unique transaction ID, txid. The 
coordinator maintains a map to keep track of all the 
transactions  indexed by txid. The map acts as a 
finite state machine for the coordinator, which tracks 
the states of each transaction (prepared, committed, 
abort) as shown in Figure 2. Every operation on the 
map is replicated by raft across the coordinator 
replicas. 

The transaction requests are handled by the 
coordinator with 2PC [9]  and 2PL [10] across 
multiple shards. As in a typical two-phase protocol, 
the prepare phase is to ensure the shard leaders 
(cohorts) are available and ready to execute the 
transaction. The shards respond to the coordinator 
with the prepared message if it 1) acquired all the 
locks for the keys in the transaction (section 3.8), and 
2) satisfied the conditional checks on the operation, if 
exist (section 3.6). Once the coordinator receives 
prepared messages from all the cohorts, it sends a 
commit message to commit the transaction. Otherwise, 
it sends an abort message to all the cohorts and 
releases the locks. 

3.5. Read-only transactions 

A read-only transaction is a transaction that consists 
of only GET operations on the key value store. This 
can be on a single shard or across shards. Since the 
GET operations does not alter the key value store, 
there is scope for optimization. In our implementation, 
the coordinator figures out if the transaction is 
read-only and marks it in the prepare message to the 
cohorts. The cohorts return the values of GET 
operations in the response. Once the coordinator 
receives responses from all the cohorts, it skips the 

Figure 2: Two-phase commit diagram of a transaction request   
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commit phase and replies back to the client 
immediately. This might result in stale reads on the 
client side. However, in our implementation the 
read-only transactions are only used for compound 
operations like ADD, SUB and XFER that support 
conditional set operations. This helps alleviate the 
problem of stale reads and the client can retry to 
operate on the latest data. 

3.6. Optimistic locking 

As described in section 3.1, compound operations, 
XFER, ADD and SUB, consist of a read-only 
transaction followed by a conditional SET transaction. 
In order to ensure compound transactions are atomic 
and externally consistent, the second transaction must 
always operate on the latest data. In our 
implementation, this is achieved by means of 
coupling conditional SET with optimistic locking [14]. 
It can be also treated as a distributed 
CompareAndSwap operation.  During the prepare  
phase of 2PC, the condition is validated by cohorts 
when fetching locks as described in section 3.8. The 
cohort agrees to execute the transaction and sends 
back parepared message to the coordinator only if the 
condition holds.  

Figure 3 demonstrates an example that two clients 
simultaneously request for a transfer operation on two 
keys. In this case, Client 1 succeeds because it passes 
the conditional SET. Client 2 lags behind and fails in 
the conditional SET but will eventually succeed on 
retry. 

3.7. Transaction recovery and garbage collection 

 As discussed in section 3.4, coordinator replicates 
its state using raft to all its replicas. When a new 
leader is elected, it can recover any pending 
transactions by consulting its state. In our 
implementation, we listen for leadership changes in a 
separate background thread. When the raft notifies 

leadership changes, the new leader scans its map and 
recovers all transactions that are not in committed 
state by sending appropriate abort/commit messages 
depending on the transaction state.  

In addition, the same background thread garbage 
collects the data of all the committed transactions to 
prevent the coordinator finite state machine from 
growing infinitely [9].   

3.8. Concurrent map 

 We implemented a concurrent map to both support 
concurrent writes and 2PC transactions. To minimize 
the waiting time of locking, we adapt the fine grain 
locking strategy, that is, one global lock for the entire 
map and one local lock for each key-value pair 
respectively, all of which are readers-writer locks. 
The idea is, once the local locks are obtained, the 
global lock should be lifted at the earliest possible 
time to unblock other transactions. Note that the 
waiting time of 2PC is not negligible, in that it is 
spanned across two phases, the prepare and 
commit/abort including one round-trip data 
transmission between the coordinator and cohorts. 
Table 1 shows a performance benchmark comparison 
of concurrent writes between our concurrent map 
implementation and a map with a single lock only. It 
is observed that while the writes running time grows 
exponentially as the waiting time increases in the 
naive implementation, it remains the same in the fine 
grain implementation. Even if the network latency is 
as low as 1 ns, it shows significant improvement in 
efficiency, ~ 6.4 times. 
TryLocks and Abort are two important 

interfaces implemented to serve the purpose of 2PC. 
TryLocks tries to acquire the global and local locks 
with two configurable timeouts, GlobalTimeout 
and LocalTimeout. The new keys, if there are any, 
are created with a temporary tag with locks attained. 
Besides, all the keys in the transaction are also tagged 
with the txid. TryLocks is determined to be 
successful when 1) all the locks are acquired before 
timeouts, and 2) all the conditional checks described 

Waiting Time Single lock Fine grain locks 
1 ns 2,339 ns/op 364 ns/op 
1 μs 7,577 ns/op 443 ns/op 
1 ms 1,214 μs/op 408 ns/op 

Figure 3: An example how optimistic locking works when two 
clients send XFER requests simultaneously 

Table 1: Performance benchmark comparison  
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in section 3.6 are satisfied. Otherwise, the map and 
relevant locks are rolled back to the state before 
TryLocks was called. In either case, the global lock 
is lifted as soon as possible. Abort is called when the 
coordinator decides to abort the transaction. It uses the 
temporary tag to distinguish the new and pre-existing 
keys. The former ones are removed, and the later ones 
are unlocked only if its attached txid matches with 
the transaction. This check is necessary as it 
guarantees that the locks are only lifted by the same 
transaction that attained them. 

We started off with both the GlobalTimeout 
and LocalTimeout as constant but found that it 
can lead to deadlock when multiple transactions for 
the same keys happen to attain mutually exclusive 
locks across shards. To resolve the issue, we set 
GlobalTimeout as a fixed constant but 
LocalTimeout as randomized duration, for each 
transaction, in the same order of one round-trip data 
transmission time. In this case, even if the deadlock 
occurs in the first place, once the shorter ones time out, 
the transaction with the longer timeout can eventually 
acquire the locks and proceed to the next phase. 

4. Performance 
This section presents an evaluation that establishes 

a  baseline system latency and a fault tolerant analysis 

that explores the impact of leader failure. For 
experiment, we launch our system with three docker 
containers to simulate the server nodes in practice. 
Each container consists of three processes, one for the 
coordinator and the rest for two different shards. In 
addition, there is one more container for the clients to 
request to the system. 

4.1. Latency 

To measure the latency of each operation supported, 
a fixed number of clients are set up and each of them 
generates new requests to the coordinator once it 
receives the feedback of the last request for a duration 
30 s. After it finishes, the latencies of each request are 
gathered across clients over the duration to form a 
distribution of latency. We examined the case of 1, 2, 
5, 10, 20, 50, 100 and 150 concurrent clients to see the 
impact of the number of clients on the latency.  

Figure 4(a) illustrates the latency of GET and SET 
operations where no same keys are requested at the 
same time on the servers. It is seen that the request 
latency grows for both GET and SET as the number of 
clients increases. The SET operation takes longer to 
respond than GET, as is expected with readers-writer 
locks mentioned in section 3.8. Besides, the gap 
between the average and 95th percentile response time 
is larger for SET than GET, indicating a heavier tail in 

(a) (b) 
 

Figure 4: Latency of each operation 
(c) (d) 
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the latency distribution for writes operations. Figure 
4(b) shows the impact of  multiple clients sending 
SET requests on the overlapped keys. Although the 
average and tail response time increase when key 
conflicts happen, the increment is not as large as the 
difference between GET and SET. 

Besides, we also investigated the latency of 
read-only vs a typical 2PC transaction. Both types of 
the transactions are guaranteed to be across two 
shards in this experiment. As shown in Figure 4(c), 
2PC transaction puts a great burden due to its 
coordination algorithm compared to the read-only 
transactions that only involves prepare/prepared 
phase. This is, however, indeed a tradeoff between the 
availability and richness of transaction semantics as 
expected. The tendency becomes more obvious when 
the client size grows. When the number of clients 
approaches 150, both of the average and 95 tail 
latency reach 5 s, which is the HTTP request timeout 
set for the clients. We also explore the latency of 
operations ADD and XFER that uses optimistic 
locking as shown in Figure 4(d). Given that both of 
the operations consist of two transactions internally 
and require multiple rounds of communication as 
mentioned in section 3.4, even the ADD operations 
that involve a single shard are relatively expensive to 
support.  

4.2. Fault tolerant 

In this experiment, 5 clients are launched 
concurrently, of which 4 clients keep sending GET 
requests and the rest one keeps sending SET requests. 
We stop the docker container containing the 
coordinator leader 10 s after the experiment starts in 
order to simulate a node failure. Figure 5 shows the 
traffic rate before and after the container stops. With 
the stop of the container, both GET and SET traffic 
drop down to zero for less than a second and then 
recover to the normal state, which is as anticipated for 

a fault tolerant system. The slight decrease of traffic 
rate after recovery can be explained by the fact that 
the shard leaders happened to be in the same container 
as the coordinator before the failure but spread across 
containers after the leaders election. 

5. Conclusion and future work 
This paper presents a strongly consistent, fault 

tolerant transactional key value store using Raft and 
2PC. A few improvements in the areas of service 
discovery to find leaders of raft groups, consistent 
hashing to support equal redistribution of keys during 
configuration changes can improve the efficiency and 
robustness of the system. Our performance tests also 
indicated that 2PC with presumed commit 
optimizations is still slow. To further improve 
performance, we can extend the system to support 
Google’s Percolator transaction model [15] which is a 
variant of 2PC. Overall, the project gave us an 
opportunity to understand the trade-offs and 
challenges involved in implementing a scalable 
distributed system. 
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