
RPCBOARD:
Reconstructing and Visualizing Distributed Traces from Log Data

Garrick Fernandez
garrick@cs.stanford.edu

Stanford University
Stanford, CA

Abstract

Remote procedure calls (RPCs) are a foundational
building block for distributed systems. RPC libraries
allow developers to write a language-agnostic de-
scription of an RPC service and compile client stubs
and server code that allow computers to communi-
cate with one another. With multiple nodes working
in concert to present the abstraction of a unified ser-
vice, the tasks of debugging, analyzing, or simply un-
derstanding distributed systems become harder. We
focus on the goal of making a distributed system ob-
servable, developing an end-to-end framework, called
RPCBOARD,1 that collects log data from server and
client interactions, reconstructs a timestamped call
graph, and visualizes playback of the call graph in
real time. We consider tradeoffs between performance,
accuracy, detail, and the overhead of instrumentation
and code modifications needed to reconstruct these
traces.

1. Introduction

When developing distributed applications that uti-
lize RPC’s, it can be useful to see how the applica-
tion is operating as a whole. To this end, we present
RPCBOARD, a framework that instruments and visu-
alizes the operation of distributed applications on the
C/C++ gRPC core. We hope this tool would be useful
to students or developers looking to gain intuition for
how their application is working.

In section 2, we further define what an RPC is, as
well as introduce gRPC, a popular library for imple-

1The code is available at github.com/garrickf/rpcboard.

menting distributed applications. In section 3, we dis-
cuss the goals we want to achieve and simplifying as-
sumptions we made over the course of the project. In
section 4, we discuss the architecture of the system
in depth, outlining each of RPCBOARD’s three major
components and design problems that were solved for
each. In section 5, we evaluate the framework. In sec-
tion 6, we discuss related works that contributed to the
formation of the project.

2. Background

In a remote procedure call (RPC), a procedure is ex-
ecuted in a separate address space from the caller (typ-
ically, on another machine, over a network). Clients
do not have to deal with the specifics of establishing
communication between these address spaces, as well
as marshalling procedure parameters and data to and
from a serializable form that can be sent over the wire.

An RPC library helps developers write an RPC ser-
vice; one such library is gRPC[1], open sourced by
Google in 2015. gRPC uses Protobufs as its interface
definition language—developers describe the RPC ser-
vice in a .proto file, and use the protoc compiler
to produce language-specific stubs and server code.
Communications are typically sent over HTTP/2.

gRPC is popular because it has libraries in multi-
ple languages, including Python, C++, and Go. The
libraries for all C type languages make API calls to the
same C/C++ core (Figure 1).

3. Goals and Assumptions

Our goals are to create an instrumentation and visu-
alization framework that takes little effort to get set up,
and offers users a good intuition of how their system

1

https://github.com/garrickf/rpcboard


Figure 1. The gRPC language stack. The languages we fo-
cus on are highlighted in white.

is running. We were inspired by previous visualiza-
tions and work done on visualization frameworks (see
Related Work), so we wanted to create something that
could collect data for a distributed trace in real time
and play back a visualization of it. We proceeded in
two milestones:

1. Investigate gRPC and produce a method for gen-
erally instrumenting applications and assembling
a distributed trace. An idea we borrow from pro-
filer tools such as gprof is the idea of a hierar-
chical call graph—who called what, and when.
This provides a useful utility for developers in of
itself, and it’s a stepping stone to visualizing a
distributed trace.

2. Take the hierarchical call graph and turn it into an
animated visualization. This was the focus on the
front end, described more in the next section.

We developed on a single machine and, for the sake
of simplicity, focused first on developing traces that
worked under ideal conditions (no dropped connec-
tions, no clock skew).

4. Architecture

The overall architecture consists of three compo-
nents. On the RPC side, we prompt clients and servers
to produce HTTP/2 trace log data, which we forward
to a central log server. This log server, the second com-
ponent, takes log data and reconstructs a distributed
trace with it. The third component is a dashboard that
can visualize and play back distributed traces. The
components were developed primarily in JavaScript
(Node.js) and Python, with additional reading of the
gRPC core source code, which is in C++.

In the next three sections, we flesh out each of these
components in more detail, describing design deci-
sions and interesting challenges we had to solve.

Figure 2. The RPCBOARD architecture.

4.1. RPC Layer

At the RPC layer, we present a script,
rpcboard-trace, that is meant to be called
with the executable that starts servers or client calls in
the target distributed application. This script makes
a streaming HTTP/TCP connection to the log server
(which is started with a call to the rpcboard script),
and configures the running process to forward all of
its log data to the log server for processing.

Why send log data? There are indeed other places
where instrumentation can be inserted into an RPC ser-
vice. For example, one could write additional stubs
that pass around trace information, and require the ap-
plication developer to use those. Further, one could
use the gRPC specific interceptor API, which allows
developers to access the parameters and context of an
RPC specifically at the moments clients and server
send and receive them. At the network layer, if one
routes all RPC traffic through a web of proxies un-
der our control, we have access to all communication,
which would also allow us to profile the system. The
issues with these instrumentation strategies, and why
we chose to go with log data, was that the aforemen-
tioned approaches require additional overhead, either
in terms of code or infrastructure. In the interest of
creating a framework that was easy to plug in and use,
it was appealing to make it rely on logging code that
already exists within gRPC. It is also an interesting
problem whether a distributed trace can be faithfully
recreated from log data, a problem we further discuss
in the next section.

One large challenge at this layer was the determi-
nation of what data was salient to send, in order to
produce an accurate, detailed distributed trace. gRPC
offers several trace flags that allow one to log every-
thing from API calls to the C++/C core, to timers in
the gRPC internals, to load balancing and DNS reso-
lution. For our traces, we found that the http flag,
which traced state in the HTTP/2 transport engine (in



other words, at a layer below the core), provided the
information we wanted.

The reason why this provided sufficient infor-
mation to recreate a trace is due to the way
gRPC handles transport operations. In the gRPC
core, collections of steam operations (a struct called
grpc transport stream op batch) are sent to
transports, which represent the ongoing communica-
tion between a client and server[5]. These transport
operations are processed asynchronously, and their re-
sults are returned via a completion queue, which may
trigger additional logging. The gRPC core prefixes
each log line with a timestamp (resolution in nanosec-
onds), a thread id (TID) of the thread prompting the
logging, and the source file and line of the code that
triggered the log. Log lines involving transport oper-
ations also include the address of the transport (trans-
port ID). Combining the transport operations with their
associated metadata allows us to reconstruct a dis-
tributed trace.

To illustrate, a sample timeline of stream operations
for a client sending a request to a server could look
like:

1. A client sends initial metadata.

2. A server receives initial metadata.

3. A client sends a message.

4. A client sends trailing metadata.

5. A server receives a message.

6. A server receives trailing metadata.

4.2. Back end layer

The back end log server is initialized with a call
to rpcboard. On one port, the server listens for
connections from rpcboard-trace processes; on another
port, the server serves the front end dashboard, pre-
sented in the next section.

The server’s main task is to ingest incoming log
information and construct it into a hierarchical call
graph. To accomplish this, we developed a solution
where larger and larger primitives are constructed with
observational data from the log. At each step, we
use the currently collected data to cross-reference and

Figure 3. Diagram of an example distributed trace. One
RPC call spawns two additional RPC calls to other services.
A sequence of (client send, server receive, server reply, and
client receive reply) forms a Span.

match events until we can construct the full hierarchi-
cal call graph.

At the first layer, transport stream operations are ar-
ranged into observations called LogEvents. Each Lo-
gEvent contains one server’s perspective of a chain of
communication: either they were the sever receiving a
request and processing it, or they were a client sending
off a request and waiting for the reply.

These log event objects are created and emitted by a
Parser to another class, called a Spanner. The Span-
ner combines LogEvents into Spans, which contain
both perspectives of the RPC communication (Figure
3). Authorities, and paths, are used to cross reference
and assemble Spans.

Spans are then structured into a tree-like object,
where parent nodes are responsible for making the
RPC calls below them. Thread ID’s and transport ID’s
are used to cross reference Spans here. The TreeGen-
erator class is responsible for this reconstruction and
also for keeping track of node metadata (such as au-
thority names, edges, and unique node ID’s for the
front end).

4.3. Front end layer

The front end is a dashboard that allows users to
visualize the execution of a distributed application. It
queries the server for new, compiled distributed trace
information at set intervals, then visualizes the in-
gested data using React and three.js, a Javascript 3D
library with a default WebGL renderer.

To make it easier to understand what is happening in
a distributed trace, a canvas is presented where nodes
are drawn as circles, and “packets” containing RPC in-
formation are animated moving between them. Edges



Figure 4. The working dashboard prototype, with nodes and
animated RPC messages. Further work would add a play-
back bar and timestamped graph.

are drawn between nodes that communicate at least
once over the entire trace, giving a view of the total
architecture of the system.2.

Once a hierarchical call graph is established in the
back end layer, the matter of drawing the graph on the
canvas is a different problem. Unlike the structure of
the call graph, which shows causality, we want a way
to query relevant animation information at given points
in time. Additionally, we would want to be able to
query for relevant events across a range of times, so
we can display relevant information to where the user
currently is (such as a playback or scrub bar). All the
time, we want these to be done with a small number of
operations, for performance.

These lend well to a B+ tree, which supports
fast point queries, due to the high degree of its
nodes, and fast range queries, due to the leaf nodes,
which store values connected in a linked list. We
developed a modified B+ tree structure called an
AnimationQueryTree in order to translate and
store the distributed trace.

Each of the internal, or index, nodes of the tree have
n + 1 keys and n values. The additional key allows
each internal node to know the range of time it has
information about. When the tree is constructed, all
timestamps are extracted from the hierarchical tree and
sorted; the ranges between each timestamp become a
leaf node in the AnimationQueryTree. Like the

2A video of a working draft of the visualizaion (not shown
in the original demo and presentation) can be found here:
youtu.be/5aYhiM84PqU.

index nodes, each leaf node also knows it’s start and
end ranges, so an AnimationQueryTree can be
built from the leaves up to the root, with each node’s
start and end ranges forming the keys in the parent
node.

When an AnimationQueryTree is being filled
with information, the leaf node corresponding to the
start of the event is found. An AnimationInfo ob-
ject is appended to a list of objects in the leaf node,
and all leaf nodes following it until the end time of the
event is reached. During animation, the current times-
tamp is used to find the relevant leaf node, which con-
tains all events that need to be represented or animated
on the front end. The leaf node’s start and end ranges,
as well as the current time in the animation, can be
used to interpolate element postions on the canvas.

5. Evaluation

Figure 5. Pretty-printed hierarchical call graph. Each node
has an associated Span (except for the root node), and a
number of children nodes that represent calls that the parent
made.

The system was evaluated on two sample RPC ap-
plications we developed using the Python localization
of gRPC. One application, pingpong (seen in the
demo and Figure 5), consisted of two servers passing
a number back and forth, decrementing it by two each
time. When the number reached 0 or −1, that server
responded with whether or not the number was even,
and the messaged bubbled back up to the client who
sent the original number.

Since communications are animated, relative la-
tency can be observed among communications, which
allows for some level of profiling a distributed appli-
cation.

https://youtu.be/5aYhiM84PqU


6. Related Work

RPCBOARD is inspired by and builds upon previous
work on observability and distributed tracing.

In the RPC layer, alternative instrumentation ap-
proaches, such as OpenTelemetry and Istio, intercept
RPC communication at different layers of the language
stack (the interceptors API and network, respectively).
RPCBOARD opts for gRPC logging information, as this
comes out of the box.

The idea of using application logs to extract per-
formance insights is the driving idea behind Splunk,
which allows customers to sift through and visualize
large amounts of heterogeneous log data. RPCBOARD

takes a slightly more opinionated approach, throwing
irrelevant log information away during parsing, and
surfacing only the hierarchical call graph for visual-
ization on the front end.

OpenTelemetry[4], a nascent project and the result
of a 2019 merger between existing projects OpenCen-
sus and OpenTracing, seeks to create robust, portable
telemetry via a unified API and SDK that’s agnostic
of the backend collecting and processing information
and the front end ingesting it. RPCBOARD borrows and
adapts the specification of a “span” in producing its
own trace primitives. However, whereas OpenTeleme-
try (on gRPC) relies on the interceptor API to insert
tracing information into each RPC call for collection,
the log server reconstructs the timeline of execution by
corroborating log data after collection.

Netflix’s project Vizceral[2] heavily inspired the
front end design, informing the tech stack (React and
three.js) and the general procedure of ingesting data
and drawing it. In contract to Vizceral, the graph data
in RPCBOARD is more complicated, since we produce
an AnimationQueryTree that can trace the flow
of individual RPC calls in a trace. Vizceral opts for a
more high-level picture, assigning an aggregate mea-
sure of network traffic to each edge in the graph, and
drawing a “flow” of dots to simulate, but not repro-
duce, the requests being sent.

Diego Ongaro’s Raft Scope visualization[3] also
served as visual inspiration, with its use of color
coded messages and graphics encoding node and sys-
tem state.

TensorBoard, a framework for visualizing machine
learning experiments in TensorFlow or Pytorch, was

the initial inspiration for the idea of an end-to-end in-
stumentation and dashboard solution. RPCBOARD fol-
lows a similar process of collecting “summary opera-
tions” from the run of an experiment, and serializing
that information into files for access on the front end.

7. Conclusion

In this paper, we present RPCBOARD, a minimally
invasive instrumentation and visualization framework
that works with gRPC applications on the C/C++ core.
In developing this, we contribute the following ideas:

1. A taxonomy of vital information that must be pro-
vided (or produced) through application logs in
order to reconstruct distributed traces.

2. Primitives for trace reconstruction that allow us to
build the distributed equivalent of a hierarchical
call graph.

3. A B+ tree-like lookup structure that can be con-
structed from the call graph to efficiently deter-
mine which elements need to be drawn and ani-
mated.

While many of the front end components re-
main yet to be fleshed out, the server is able
to produce distributed traces in a hierarchical tree
format, and these trees can be translated into
AnimationQueryTrees for use on the front end.
Since the pathways for information transmission and
transformation are in place, future development on this
framework could focus on utilizing more information
stored in the AnimationQueryTree to further im-
prove the visualization and add supporting metadata to
the dashboard, such as the authorities, RPC call info,
and more.

8. Acknowledgements

Special thanks to David Mazières and the rest of
the CS244B course staff for their advice and guidance
throughout the project.

References
[1] gRPC. grpc.io. 1
[2] Netflix. Vizceral open source. 5
[3] D. Ongaro. Raft scope. 5



[4] OpenTelemetry. opentelemetry.io. 5
[5] V. Pai. Transport explainer. 3


