Reproducing and Performance Testing Kademlia

Michaela Murray Isaac Westlund Guy Wuollet
Stanford University Stanford University Stanford University
murray22@stanford.edu iwestlun@stanford.edu gwuollet@stanford.edu
ABSTRACT P2P System under Churn” [5]. Churn refers to the continu-

Distributed hash tables (DHTs) have become a widely used
construct of many distributed systems, offering optimal ad-
dition/removal of nodes with minimal work and the ability
to withstand significant malicious attacks. After surveying
existing DHT architectures, we decided to replicate Kadem-
lia. For our project, we both implemented Kademlia in Rust
and performance tested a reference implementation on AWS.
To test the ability of Kademlia to adapt to changing network
conditions, we aimed to benchmark Kademlia’s performance
under churn under both a more realistic setting between
multiple AWS instances, and a more reproducible setting us-
ing a simple single machine network simulator. Our Github
is https://github.com/mmurray22/CS244B

1 INTRODUCTION

Kademlia [3] is a distributed hash table that uses the XOR
metric to measure distance between nodes. This results in a
tree like structure that allows for quick traversal of network
nodes for the purposes of retrieving stored data or storing
data. As a distributed hash table, Kademlia is a key value
store, that uses a key hash to locate the stored value within
the network. This architecture makes Kademlia, and other
distributed hash tables, resilient to changes in the network
such as the frequent addition or subtraction of nodes. Our
goal is to replicate the Kademlia protocol and analyze it’s
performance under churn.

We are submitting this project for both CS244, and CS244b.
Breaking down the work, we focused on implementing Kadem-
lia in Rust as the part of the project fulfilling the equivalent
work of the 244B project and replicating performance test-
ing figures as the part of the project fulfilling the equivalent
work of the 244 project. Our group member Michaela Murray
is only in CS 244B; however, as she contributed greatly to
this project, her name will also be on our CS 244 paper.

1.1 Related Work

Unfortunately, the Kademlia paper only has a single per-
formance related figure, which is based upon data from a
largely unrelated study which we do not intend to replicate.
Rather, the focus of the project in regards to CS244 will be to
replicate the performance measurements from “Performance
Evaluation of a Kademlia-Based Communication-Oriented

ous arrival and departure of participating nodes and is one of
the most important factors for P2P file-sharing networks. A
network that does not handle churn gracefully will struggle
to be performant at a large scale and result in users flocking
to other platforms.

[5] runs Kademlia over the network simulator NETHAWK-
EAST. This simulator is rather expensive, and so instead we
originally planned to run our tests on open-source network
simulators such as Mini-net or NS-3. After further analysis
of methods to evaluate the performance of Kademlia, we de-
cided to test Kademlia on the live internet using small AWS
nodes. We explored open source simulators, but found that
none fit our use case exactly. Mininet [1] is a great simulator,
but is designed for the data center environment and does not
well simulate a P2P network that would be deployed over
the public internet in practice. Shadow [2] is better suited
to a P2P network simulation, but is very memory intensive
and involves significant overhead. Instead, we decided to
build a feature rich testing harness that serves as a sort of
network simulator. Kademlia nodes run as individual threads
and communicate without virtualizing and/or recreating the
actual network. This makes the harness significantly lighter
weight while sacrificing the simulation of the network it-
self. We thought the combination of running the both a live
network on AWS and the testing harness provided the best
combination of tradeoffs.

2 OVERVIEW OF KADEMLIA

As the extended Kademlia paper[1] already goes into great
detail regarding the implementation and proof-of-concept of
the Kademlia Protocol, we will not rehash it much in depth
here. However, we will provide a brief overview of the key
areas we will be focusing on in our reimplementation so as
to give a reader not familiar with the original work a base
off of which to understand the rest of the paper.

2.1 XOR Metric

The XOR metric was one of the defining parts of the Kadem-
lia paper, and it defines the distance between any two nodes
in the DHT to be XOR of each node’s respective 160-bit ID.
In the original paper, the XOR metric is shown to be a valid
distance function since it satisfies the three main criterion
for a distance function: 1) the distance between the node and

https://github.com/mmurray22/CS244B

itself is zero, 2) it is symmetric, and 3) it follows the triangle
inequality. Thus, the XOR metric was proven to be a simple
and cheap way of calculating the "distance" between two
nodes while still satisfying all the requirements of a "real"
distance function. Note that in this instance, "distance" is
the distance between two nodelDs, meaning that if similar
nodelDs are assigned to two nodes in completely different lo-
cations in the world, then they would have a small "distance"
between the two nodes.

2.2 Kademlia Protocol

The basic Kademlia Protocol depends on four Remote Proce-

dure Calls (RPCs): PING, STORE, FIND_NODE, and FIND_VALUE.

The PING RPC is used often to determine whether a node is
alive, which can be critical when determining whether or not
to add another node to its routing table. The STORE RPC take
a key and its corresponding value and then sends them into
the DHT to be stored in a node with the "closest" matching
nodelD to the key value where closeness is determined by
the XOR metric. The FIND_NODE and FIND_VALUE RPCs
both depend on a lookup process (as does STORE RPC) to
find the node or the node with the desired value.

2.3 Network Structure

The network structure of Kademlia depends on each node’s
routing table and the underlying system of kbuckets which
determines the routing table structure. Kbuckets are lists
of nodes which the primary node has contacted or been
contacted by at some point. There are a maximum number
of 160 kbuckets that can be created, and the criterion for a
particular node falling in one kbucket or another is the XOR
metric distance between that node’s and the primary node’s
IDs. This network structure allows for flexible growth of the
routing table throughout the course of the DHT and also for
concise compartmentalization of different nodes.

3 REASONING BEHIND USING RUST

One of the defining characteristics of this project is the choice
to use Rust as the prevailing language for the implementation
of our Kademlia Protocol. Rust has many advantages, but
the three main reasons why we chose Rust for this project
is its 1) ownership model, 2) high performance comparable
to C, and 3) ease of use. We will go into each of this reasons
briefly so as to highlight why we made this critical choice in
our project.

3.1 Ownership Model

One of the outstanding features of Rust is its ownership
model. This enables programmers to eliminate an entire

Murray, Westlund, Wuollet

class of security bugs which occur due to memory misman-
agement. Thus, it is an especially attractive language to write
or rewrite large, complex systems in.

3.2 High Performance

Rust is a high performance language that is comparable
to C in many cases. This makes Rust even more desirable
combined with the ownership model mentioned above.

3.3 Ease of Use

Rust was created for much greater usability as compared to
other low-level languages like C. Rust emits easy readable
and easy to reference compiler errors which allows the user
to have an immediate direction to follow when they run into a
compilation error. Between the easy-to-read compiler errors
and extensive documentation, Rust is better than languages
such as C when it comes to addressing errors in the program.

4 IMPLEMENTATION

Below, we discuss the implementation of the Kademlia pro-
tocol and the test harness below.

4.1 Kademlia Protocol

The Kademlia Protocol has four main parts: Basic Structs,
Overlay Network, Protocol RPCs, and bootstrapping into
the network. The basic structs consists of Nodes, ZipNodes,
and RPCs. For simplicity’s sake, we represent node IDs as
Rust unsigned 64-bit values rather then the larger unsigned
160-bit values used in the paper. In our implementation, node
IDs are initialized from a hash on the node IP. Node IP’s are
initialized to a string passed at node creation. The Nodes
struct describes each node within the Kademlia Distributed
Hash Table and is comprised of the k-buckets table, a node
ID, an IP, a port, a lookup_map, a lookup_counter, and a
storage HashMap. Our k-buckets table is represented as a
vector of vectors where the i inner vector corresponds to
the "i*" bucket" containing all nodes whose xor distance is
within [27, 2/*1). The lookup map is used to hold state for any
particular lookup started by the node.

4.2 Test Harness

The testing harness is meant to simulate a basic network
such that we can test the Kademlia RPCs. In our initial talks
with David, he recommended to make some simplifying as-
sumptions to focus on the core of the protocol. With this
in mind, our testing harness makes the simplifying assump-
tions of no NAT traversal, or DNS lookup. We also assume
that all nodes have a unique IP at creation.

In our testing harness, the "network" is represented as a
global hashmap from "IP" strings, to Rust MPSC TX channels
that can be used to send to each individual node. Nodes our

Reproducing and Performance Testing Kademlia

represented as a Rust thread which can respond to RPCs re-
ceived through its own TX channel, and send RPCs to other
nodes TX channel through the "network" abstraction. We de-
cided to create our own network simulator rather then using
an off the shelf implementation as most network simulators
such as mini-net or Shadow, create the entire TCP/IP abstrac-
tion which results in the use of huge amounts of memory,
limiting the total node capacity that we could run on a single
machine.

4.3 Conversation with Author

As Professor Maziéres was one of the authors on the Kadem-
lia paper, we were lucky enough to get some of his advice on
our project. He suggested the one of the hardest problems
for implementing Kademlia, and peer to peer systems over
the modern internet, is NAT traversal. In order to fix this
problem he suggested that we could simply assume all nodes
in the network used IPv6 addressing. Thankfully, with AWS
we are able to bind a static IPv4 address to each node we
create. This will allow us to either make the IPv6 assumption
or to make the assumption that nodes in the network are
not behind an IPv4 NAT. The testing harness also avoids the
NAT traversal problem as it does not virtualize or simulate
the network itself.

5 PERFORMANCE TESTING
5.1 AWS

5.1.1 Performance Metric. The metric for our performance
testing was success rate. Success rate is defined as the por-
tion of get requests that return the same value as originally
set for a given key. More specifically, we tested success rate
for various level of churn. Churn is how often nodes leave
the network. The level of churn is measured by the mean
uptime of each node. A shorter mean uptime means more
churn.

5.1.2 Setup. We attempted a loose reproduction of [5].

There were some significant differences. [5] used the NETHAWK

East simulator whereas we ran a live network on AWS. The
paper also used 400 nodes whereas our implementation was
only able to run 20 due to AWS limits. Further, [5] used a
different underlying messaging protocol from the original
Kademlia paper, and we used a reference implementation
[4].

Inspired by [5] we made several assumptions. First we
used a single Kademlia server that never churned to boot-
strap new nodes or nodes reconnecting to the network after
churn (failure). We modeled the uptime for each node as an
exponentially distributed random variable and set the mean
uptime and downtime equal for each node. This resulted in

a system where half of all nodes are live in the network at
any given time in expectation.

In order to performance test Kademlia, we chose to run
many AWS EC2 instances. Each instance used a shared Ama-
zon Machine Instance (AMI) with the Kademlia code, and 4
scripts. One script created an initial node in the Kademlia net-
work, a second script bootstrapped a Kademlia server given a
list of existing Kademlia servers, a third script bootstrapped a
Kademlia server and made a set request for a given key value
pair, and a fourth script bootstrapped a Kademlia server and
made a get request for a given key.

Each instance had a bound public IPv4 address that was
used to connect with other instances. Kademlia ran over
port 8468. In order to coordinate the instances and run per-
formance tests, we used a central controller script running
on a personal computer. This script used the AWS Python
SDK, boto3, and the AWS command line interface. It cre-
ated instances and then used AWS Systems Manager (SSM)
to send commands to each instance. SSM runs an endpoint
agent on each instance that servers as a proxy user accounts
and run commands on behalf of the script. Alternatively, an
SSH client could have been used to issue commands. Due
to poor internet connectivity the pipe often broke when at-
tempting to use SSH. Since SSM is asynchronous, we did not
need to worry about maintaining a constant connection for
long running performance tests. Due to AWS limits, we were
only able to run at most 20 Kademlia nodes at a time. We
attempted to raise the limit, but were unsuccessful.

5.1.3 Results. We attempted to reproduce Figures 1a and
2 in [5]. Despite the differences between our setup and [5],
we achieve relatively similar results.

For 1 we see that Kademlia provides a higher success ratio
for lower churn. Note that the x axis displays the the mean
uptime and mean downtime of nodes in the test. That uptime
is an exponentially distributed random variable calculated at
the launch of each node. For a lower mean uptime, the node
will churn more often, leading to a lower success rate.

A lower mean uptime, and thus higher churn, leads to
lower success rates because this means entries in the routing
tables of each node and out of date and even that the stored
value itself might no longer be in the network. Our graph
shows this result as expected.

For reproducing Figure 2 in [5] we varied the K value
in Kademlia and measured the resulting success rates. With
Alpha = 1, we would expect higher K to lead to higher success
rates at all levels of churn. This is because higher K means
larger routing tables for each Kademlia node and a greater
likelihood that some entries in that routing are still fresh,
meaning the associated nodes are still running. This result
is demonstrated in 2. However, increasing K above 2 seems
to have a de minimus impact on the success ratio for a given

Success ratio (%)

50 H . H L H H H H
0 200 400 600 800 1000 2000 3000 4000
Moniine(S)
(a)
1.0
e T

09
08
07

o
o

Success Ratio (%)
s
@

—— K Value=20, Alpha=3
—B— K Value=3, Alpha=3

200 400 600 800 1000 2000 3000 4000
Mean Time Online (s)

Figure 1: The top graph is Figure 1a from [5]. The bot-
tom graph is our loose reproduction. The top graph
has K Value = 3 and Alpha = 3. The original Kadem-
lia paper suggests a K Value = 20 and Alpha = 3. The
Nexchange 1S the top graph is a reference to a different
messaging protocol used in [5] and not relevant to the
reference implementation of Kademlia. The x axis is
the mean uptime and mean downtime of each Kadem-
lia node in the network. This means that as the x axis
value increases, churn decreases. The y axis is success
ratio, which is the performance metric. We expected
increasing success ratio for decreasing churn, or an up

and to the right graph.

level of churn. This is likely because at least one entry in the
routing table is still fresh.

5.2 Test Harness

Currently, all the functionality to drop nodes, store values,
and get values is available in our Rust implementation. How-
ever, we were unable to obtain a succinct graph and get
performance metrics for our Rust implementation. This was
in part due to an incompatibility between the previously out-
lined AWS performance measurement system and our Rust

Murray, Westlund, Wuollet

Success ratio (%)

\ i : |
| | | |
. . : . . ‘ ‘
0 200 400 600 600 1000 2000 3000 4000
Mepiine(S)

Success Ratio (%)

~B— K Value=1, Alpha=1

—&— K Value=2, Alpha=1
—8— K Value=3, Alpha=1
—B— K Value=4, Alpha=1
++As+ K Value=5, Alpha=1

200 400 600 800 1000 2000 3000 4000
Mean Time Online (s)

Figure 2: The top graph is Figure 2 from [5]. The bot-
tom graph is our loose reproduction. The top graph
has Alpha = 1. The x axis is the mean uptime and mean
downtime of each Kademlia node in the network. This
means that as the x axis value increases, churn de-
creases. The y axis is success ratio, which is the perfor-
mance metric. We expected increasing success ratio
for decreasing churn, or an up and to the right graph.
For larger K Values, we expected an increasing success
rate as K is a system wide replication hyper parameter
in Kademlia.

implementation, thus making it hard to collect the results
from our Rust implementation and put them in the readable
visual i.e. a graph. As the test harness is CPU bound run-
ning on a local computer, there is essentially no latency in
requests. On AWS there was significant latency (on the order
of a second) for each interaction with a node. This latency
caused the AWS testing to take a long time (on the order of
15-45 minutes). The long running time gave the Kademlia
nodes a chance to time out and churn. This networking la-
tency was hard to simulate for the test harness that did not
virtualize or simulate the network.

Reproducing and Performance Testing Kademlia

6 CHALLENGES

No systems project would be complete without a series of
challenges facing it. Below, we briefly overview some of the
challenges we faced in our project and how we overcame
them.

6.1 Rust

While Rust has many benefits as detailed above, it also has
quite a few challenges. It is generally agreed upon that Rust
is a hard language to get used to, and while its ownership
system is one of the best parts of Rust, this also makes it
harder and less satisfying when starting out. Also, since Rust
is a relatively new language, there may be some features
which are still in the prototyping phase and do not have the
extensive documentation other features may have. However,
through perseverance, reading, and trial-and-error, we were
able to adjust to the Rust ecosystem relatively well.

6.2 Protocol and Test Harness

The test harness and protocol implementations presented
many challenges, some related to the challenges with using
Rust, as outlined in the previous section.. One primary sec-
tion we had difficulty defining was the lookup algorithm.
The lookup functionality could not be contained in one sim-
ple recursive function but instead had to be split up into
a three-part state machine to accommodate the RPC struc-
ture. Thus, debugging and ensuring that the correct kbuckets
were being queried/accessed presented challenges through-
out the development process. As for the test harness, some
difficulties included determining what setup would lead to
the easiest to debug interface while still trying to simulate a
realistic system.

6.3 AWS Setup

The AWS Setup presented many challenges. First, using a
custom protocol requires a specialized security group on each
AWS instance. The default security group on AWS is listed as
accepting all connections, from any protocol, over any port.
However, for security reasons the security group rejects all
connections except for SSH. This was quite challenging to
discover. A simple solution was to redefine the security under
a different name to accept all incoming network connections
over all ports.

Running commands on multiple instances was also trou-
blesome. The best existing solution seems to be AWS Systems
Manager (SSM). Using an SSH client is an option, but was
quite challenging in practice for long lived connections on
many machines. This could also be the result of a spotty
internet connection and the increased internet traffic during
Covid quarantine. SSM is asynchronous and helped solve this
problem. However, SSM has its own problems. SSM runs an

endpoint agent and requires a custom defined Identity and
Access Management (IAM) policy for any EC2 instances that
accepts SSM commands. This is also not well documented
on AWS and had to be learned through trial and error.

Regions in AWS were also a challenge. It was very difficult
to get a single script using the AWS SDK to interact with EC2
instances running in multiple regions. This seemed to be the
result of a credentials issue. The SDK state is region specific.
The desired region is generally specified in a config file stored
in the root directory of the computer. The AWS CLI helps set
this up with a simple config command. However, the region
configuration, and account ID and secret key, can be set as
environment variables of the shell. When changing region
in a script using the SDK, the config file on disk does not
change. After many failed attempts to work with instances
in multiple regions, I suspect the environment variable of the
shell conflicts with the config file on disk. For this project,
we ended up using a single region in AWS.

FUTURE WORK

There are many additions and enhancements we can make to
our current implementation. The highest priority for future
work would be to write and execute scripts related to getting
exact measurements for our Rust Kademlia implementation.
This would include creating custom Python scripts which
could take our current output values and turn them into one
or more informative visuals to show us how well our system
compares over a series of consecutive tests. After that, we
would mainly be adding enhancements and further complex-
ity to our Kademlia DHT Rust implementation. One such
enhancement would be optimizing the lookup algorithm, like
the accelerated lookups mentioned in the original Kademlia
paper [3]. Another such enhancement would be including
efficient key-republishing and optimized contact accounting.
Once these enhancements are fully in place, one further goal
we could try to tackle would be making our implementation
Byzantine fault tolerant.

REFERENCES

[1] [n.d.]. Mininet: An Instant Virtual Network on your Laptop (or other
PC). ([n. d.]). http://mininet.org.

[2] [n.d.]. The Shadow Simulator. ([n. d.]). https://shadow.github.io.

[3] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop
on Peer-to-Peer Systems. Springer, 53-65.

[4] Brian Muller. 2020. bmueller/kademlia. (2020). https://github.com/
bmuller/kademlia.

[5] Zhonghong Ou, Erkki Harjula, Otso Kassinen, and Mika Ylianttila. 2010.
Performance evaluation of a Kademlia-based communication-oriented
P2P system under churn. Computer Networks 54, 5 (2010), 689 — 705.
https://doi.org/10.1016/j.comnet.2009.09.022

http://mininet.org
https://shadow.github.io
https://github.com/bmuller/kademlia
https://github.com/bmuller/kademlia
https://doi.org/10.1016/j.comnet.2009.09.022

	Abstract
	1 Introduction
	1.1 Related Work

	2 Overview of Kademlia
	2.1 XOR Metric
	2.2 Kademlia Protocol
	2.3 Network Structure

	3 Reasoning Behind Using Rust
	3.1 Ownership Model
	3.2 High Performance
	3.3 Ease of Use

	4 Implementation
	4.1 Kademlia Protocol
	4.2 Test Harness
	4.3 Conversation with Author

	5 Performance Testing
	5.1 AWS
	5.2 Test Harness

	6 Challenges
	6.1 Rust
	6.2 Protocol and Test Harness
	6.3 AWS Setup

	References

