
Rocinante

Mustafa Bayramov
CS244B project
mbayramo@stanford.edu

Initial proposal statement

The general idea and proposal have a much broader scope. For example, in many CNF
deployment, one of the essential components of the Kubernetes system, ingress
controller. There are several open-source projects such HA load balancer etc.) that sole
role in figuring out a target worker node. Traditionally, load balancer decisions based on
mapping public IPv4/IPv6 endpoint address (service) to address of worker node via a set
of policies. That later translated by worker node to actually to address container runtime.

There is another set of use cases that primary job provide load balancer capability for
network service. There are several deployment scenarios that we can primary different as
in-line and out of the box. Essentially, in the first case, load balance usually deployed in the
direct path between an external pubic network such as the Internet and server farm. The
load balancer maintains state information about each client and each connection to a
server farm. Another deployment scenario network element such a router that is in direct
path perform redirect function based on 5-tuple or 7-tuple. In many cases, that operation
must be symmetrical since the server farm usually uses none routable IP blocks.

In all this case for a given flow information load balancer must choose same server from
pool of servers.
Load balancer can’t assume that actually server stateless, and in most of the cases server
create a state information.

Last set of use cases, flow classification, for example, in many systems that perform deep
packet inspect, one of the first steps in pipeline is TCP/UDP flow classification. For
instance, if a service provider offers parental control service for mobile customers or
internet service offers to a customer. In most basic form , for HTTP and HTTPS protocol
packet, usually analyzed for content and consulted an internal database that categorized
each domain by categories, for other protocol systems need to perform sophisticated
heuristics. In many cases, classification needs sample N number of a packet to determine
a protocol type, since some protocols, use encryption and b obfuscate itself. The most
notorious and well known system is great Chinese firewall.

mailto:mbayramo@stanford.edu

High level

The primary objective of the Rocinante project provides a distributed system and API
abstraction on top to
support TCP/UDP flow state synchronization between different data centers and cluster
members. In essence,
it allows the developer to leverage REST or GRPC API for an application status of the
application.
There is many use case under that fall category, Firewall TCP/UDP state, DPI classification
state,
load balancer server selection hash, heartbeat liveness monitoring for the server farm.

For example, if we have a set of load balancer that need synchronize that current state.
The system supports traditional distribute key-value storage, but the primary motivation
provides an
abstract and API layer that can be easily consumed by a different application
that requires fast synchronization.

There are two application written on top show case capabilities.

 A load balancer that serialize source hash selection. For example if load balancer
 chosen server A from server farm pool for a given client. It will serialize decision to
 cluster any other load balancer will do a check and if given client already in cluster load
balancer
 B and C will select same server from server farm pool.

 A packet sniffer that uses libpcap framework in order to capature raw stream
 and serialize to a cluster. Current implementation support standard pcap type of filters.

Overview.

Rocinante’s system consists set of controllers node that forms a cluster. A cluster provider
the capability
to store key-value a data that eventually consistent among all cluster members, and a REST
interface (server and client)
client that can serialize data, via REST API interface. The system provide RERT and gRPC
client that develop
can leverage.

 In order cluster maintain synchronization and consensus cluster implements RAFT
protocol.

 The communication between cluster member done via gRPC interface and model via
protobuf.

 The initial leader election protocol follow RAFT specification.

 Currently, system doesn’t snapshot define in section 5.3 protocol spec, but it s
 something to be added

 Rocinante provide capability to serialize metric and instrumentation serialize to
Prometheus
system. At Moment, it serializes Vote Request,Respond , Append Request/Respond, client
submit
request, committed data , go routine and memory monitoring.

 All data pushed to Grafana for monitoring and instrumentation purpose.

Initial protocol.

The implementation follows a RAFT recommendation and split consensus model to set of
sub
problems.

 Leader Election
 Log Replication

During a start up phase a system reads a configuration specification. The server
specification
consists a spec for each node in the cluster. For example spec consists of IP and port
number pair
for each node in the cluster, the REST api interface , that also shared with a build-in web
server, that provide
 simple UI dashboard interface, a metric server that uses separate
build in web server.

At the moment, both the REST API server and the metric server runs as separate goroutine
of the main server.
Another approach and idea de-couple both from the main server and introduce different
grpc semantic to
communicate internally. This case has one major drawback that it might potentially would
require additional
synchronization on the server-side. All counter for metric and instrumentation are atomic,
but since its single
client prometheus, it doesn’t require synchronization.

A Rocinante will automatically allocate internal server id for each member node. The
current scheme
uses hash(IP:PORT) and generates a 64-bit identifier for each node. For example if each
server bind
on 0.0.0.0:xxxxx then hash is deterministic.

In current implementation the cluster communication between each member done via
gRPC transport

protocol, and it supports generic binding via protobuf. In current todo list add C client
and introduce
intel DPKD flow classifier app.

*Below example of configuration if we want run 3 instances on localhost.

artifact:

 cleanupOnFailure: true

 cluster:

 name: test

 controllers:

 - address: 127.0.0.1

 port: 35001

 rest: 8001

 metric: :2112

 wwwroot: /Users/spyroot/go/src/github.com/spyroot/rocinante/pkg/

template/

 - address: 127.0.0.1

 port: 35002

 rest: 8002

 metric: :2113

 wwwroot: /Users/spyroot/go/src/github.com/spyroot/rocinante/pkg/

template/

 - address: 127.0.0.1

 port: 35003

 rest: 8003

 metric: :2113

 wwwroot: /Users/spyroot/go/src/github.com/spyroot/rocinante/pkg/

template/

prometheus.yml

scrape_configs:

 - job_name: rocinante

 scrape_interval: 10s

 static_configs:

 - targets:

 - localhost:2112

 - localhost:2113

 - localhost:2134

After reading a configuration and deciding what port to listen, For example, if we want to
run a Rocinante
on the same server for debug purpose. Rocinante will automatically check port allocation
and bind each server
instance to a respected TCP/UDP port.

After server finish initial configuration it will move itself to Follower state based on protocol
specification.
If cluster already stable state than a node will remain in same Follower state and will
receive messages
from a leader.

RAFT specification indicates that at any given time, each server must be in one of three
states: leader, follower,
or candidate. Rocinante adds additional state to a protocol. The primary purpose signal to
a network that server
is not ready, the motivation behind that two use cases when we want gracefully shut down
a server or
shutdown a GRPC or any other external interfaces.

During Shutdown or init state server will not accept any messages. Note we need to
differentiate a shutdown state
for gRPC interface and overall entire server shutdown. In the first case, shutdown gRPC
provides a capability
to shutdown gRPC only meanwhile respond on all REST API call that doesn’t require to
store data. For example,
monitoring, or simulate partition. For example, one unit test cover case if we Shutdown a
leader’s gRPC interface
that triggers a new leader election that leads to a situation that new leader elected and
host that has Shutdown
gRPC state remain in leader state. Later we enable gRPC back, and that creates a split-
brain scenario and
partition cluster unit test.

In the second use case, if the server needs to perform initial IO operation that require a
significant amount of time,
for example during initial boot - start up time, it can’t accept can’t accept communication.

Rocinante supports variable timers and generally observation with the semantics
described in the original paper,
related explicitly to heartbeat timer. If a network provides stable connectivity, then the
same node will remain
a leader for a very long time, since there is no need to re-elect a leader during a stable
state.

Rocinante adds added additional options to randomly and none deterministically change
a leader by delaying heartbeat
messages for sufficiently long time so other node force re-elect a new leader.

As it mentioned, each server communicates using remote procedure calls and implement
RAFT spec that defines
two types of RPCs. RequestVote RPCs are initiated by candidates during elections and
Append-Entries
RPCs are initiated by leaders to replicate log entries and to provide a form of a heartbeat.

Below protocol, spec defined for GRPC. Note that in Rocinante log entry and command
modeled as key-value pair.
Since the go map data structure and interface provides idempotent, we can replay the log
for the same key,
value pair, and that will guarantee the most recent update applied and serialized to stable
storage.
Note that guarantees eventual consistency. If one of the servers behind it will eventually
catch up.

message LogEntry {

 uint64 Term = 1;

 KeyValuePair command = 2;

}

message KeyValuePair {

 string key = 1;

 bytes value = 2;

}

message PingMessage {

 string name = 1;

}

message PongReply {

 string message = 1;

}

message RequestVote {

 uint64 term = 1;

 uint64 candidateId = 2;

 uint64 LastLogIndex = 3;

 uint64 LastLogTerm = 4;

}

message RequestVoteReply {

 uint64 Term = 1;

 bool VoteGranted = 2;

}

message AppendEntries {

 uint64 Term = 1;

 uint64 LeaderId = 2;

 uint64 PrevLogIndex = 3;

 uint64 PrevLogTerm = 4;

 repeated LogEntry entries = 5;

 uint64 LeaderCommit = 6;

}

//https://stackoverflow.com/questions/43167762/how-to-return-an-array-in-

protobuf-service-rpc

message AppendEntriesReply {

 uint64 Term = 1;

 bool Success = 2;

}

message SubmitEntry {

 KeyValuePair command = 1;

}

message SubmitReply {

 uint64 LeaderId = 1;

 uint64 NodeId = 2;

 bool Success = 3;

 string Address = 4;

}

message LogEntry {

 uint64 Term = 1;

 KeyValuePair command = 2;

}

message KeyValuePair {

 string key = 1;

 bytes value = 2;

}

message CommitEntry {

 bytes command = 1;

 uint64 Index = 2;

 uint64 Term = 3;

}

Rocinante gRPC interface uses none blocking semantics to communicate between each
node in a cluster,
and between client servers, Rocinante also leverage separate goroutine and concurrency
for heartbeat channel,
internal and external communication to external clients, internal communication for
commit channels.

In the current list of must do, I have the plan to add an ingress buffer channel to absorb a

small amount
of gRPC messages. Essentially, during transmit and receive routine, server doesn’t hold
the lock to process
RPC message as quickly as it can, but as soon as the server start processing, it must hold a
lock.
So one idea creates a buffered channel to sink RPC message and marginalize blocking
during event
processing.

During initial handshake, voting procedure or delayed or partial communication that
triggers the election process,
server declares itself a candidate begin a concurrent communication to other peers.

##Log and Storage

At current state, system support in-memory storage that provides fast O(1) access to key
value pair
or persistent storage interface. The current semantics doesn’t use an optimized IO layer
and
leverage gob library to serialize data to persistent storage.

I’ve tested gob and serialization to stable storage but doesn’t provide adequate
performance and pretty meaningless
without optimization. One idea introduces the LSM type of data structure for a permanent
log.

Rocinante adjusted the original a log format and replaced original command with key-
value pair instead.
In original RAF semantics in The leader appends the command to its log as a new entry,
then issues
AppendEntries RPCs in parallel to each of the other servers replicate the entry. When the
entry has been safely
replicated (as described below), the leader applies the entry to its state machine and
returns the result of that
execution to the client, from here we can observe that we can apply the same semantic for
any tree-based data
structure since the entire process is deterministic and same key and value can be applied
simultaneously on N

number of the server since the entire point of consensus to have common agreement on
value.

API and load balancer.

*Each node in cluster provider REST API and gRPC interface.

List of Rest call

 /leader provide capability to discover a current leader

 /shutdownGrpc shutdown grpc interface

 /shutdownNode/nodeid - shutdown entire server

 /log - responds with entire log as json, additional value size can be passed to get
portion of a log

 last 10 etc

 /commited - responds with list of commited record to stable storage. note that log/
commited can be requested

 from any server and it useful property for unit testing where we
 can simulate different fail condition and compare log and commited data.

 /get provides capability to get a value for a given key

 /flows/{size}/{id:[0-9]+}” provide capabiloty to get given hash flow, hash can be 5 or 7
tuple serialized

 by a client.

 /peer/list responds with list of all peer for a given server and status of gRPC connection,
it also serialize

 all server spec. REST end point / GRPC. This call used by client to auto discover
cluster.

 /flows - responds with entire list of flows

 /role - responds with current role of server.

 /size size of log

Cluster discovery

Each node in the cluster responds to a subset of REST API that doesn’t require a cluster
leader role. For example,
since all cluster members form a full mesh of communication, we can observer the status
of socket communication
from any node in the cluster. Note GPRC also provides a semantic where the client side of
GRPC will automatically
reconnect. That way, Rocinante never remove client peer from the list of all peers.

So the server always knows a total number of peers in cluster and the number of peers
with a stable ready state
connection. For example in steady-state if we check each node in a cluster, we will see
that all nodes connected
in full mesh.

The same if two out of five nodes will disappear and partition a cluster, we will see that two
clients connected
to two other peers are disconnected as well. We can use this property due to the nature of
bi-directional
communication. We can also use heuristic on client side and detect partition case. For
example if client see
that two out of five peers connected.

*Each node regularly updates a leader cache upon arrival RPC message. Note that leader
ID consulted with the
state itself. Rocinante provides a rest API client that encapsulates an API interaction; during
initial communication,
the client might not necessarily know about all peers in cluster nor assume about a current
leadership role.

During REST API client object creation, the API rest-client uses Node Discovery, to update
or retrieve the current
leader node endpoint. It issues the REST API call to discover who is a leader of the cluster,
rest api server end point.

As part of the initial handshake, the client determines a REST API endpoint that requires
API communication based
on the initial sequence. As part of discovery, the client also gets the full status of all peers.
So in the case of a partial communication inside a cluster, the client can observe
disconnected nodes.

The primary motivation is to minimize and reduce the client-side configuration required
for each client.
It should also be sufficient to re-point a client to any IP address of a node in thee cluster.

Meanwhile, Rocinante leaves to the implementer of application logic optimization related
to the number
of interactions to a server. One example, the client might cache the existing leader id that
will minimize
the number of calls to a server and round trip, and the client can reset the leader ID only
when the node
responds that is not a leader anymore or node status changed, or election term changed.

Load balancer App

Currently, it implements two algorithms—standard round robbin mainly used for testing
purpose and source hash selection.

The source hash algorithm used to serialize hash to the Rocinante cluster,
during a request, load balancer hashes client requests and use as a key entry for server
selection. The hash value
serialized, other load balancers upon a subsequent request first check request hash in a
cluster.
For example, if N number of the load balancer used as anycast address, all load balancers
will deterministically
forward traffic to the same server for the same remote client. The value for a hash resolve
to a target server
allows all load balancers to choose the same server from the pool for the same client and
provides stickiness.

Below is a configuration that the load balancer will read.

There is are three sections. The first section describes what VIP ports to listen, timeout, etc.
and other global
property for a load balancer. The server section defines the entire server farm that the load
balancer will use for a
given VIP, and it will continuously monitor and probe each server.

API section describes the Rocinante cluster. Note that the rest-client automatically
discovers a leader and requires
only one server. But in case if the server disconnected and the client still needs to know all
cluster members,
it requires a partial list of other members.

For example:
If, during the initial setup client successfully discovered a leader and all members of the
cluster.
Later, if the leader disconnected due to partition, etc., the rest-client will find a new leader
because it has an
entire list of all members.

If we indicate that only one server and that server never responds to the client’s initial
request, the client will
not be able to find a leader—that way. We need to mention a majority of servers so we can
discover all other members.

Note that the client doesn’t check the current leader on each request. It was done as an
optimization to
reduce the round trip over a network. It will discover a cluster only server will reject a
request if the target
server not a leader of a cluster.

pool:

 name: test

 bind: 0.0.0.0:9001

 # we indicate only one ip and let rest client discover cluster leader

 api:

 - address: 192.168.254.48

 rest: 8001

 grpc: 35001

 - address: 192.168.254.48

 rest: 8002

 grpc: 35002

 - address: 192.168.254.48

 rest: 8003

 grpc: 35003

 servers:

 - address: 192.168.254.48

 port: 8887

 - address: 192.168.254.48

 port: 8888

 - address: 192.168.254.48

 port: 8889

Example of entire configuration

artifact:

 cleanupOnFailure: true

 cluster:

 name: test

 controllers:

 - address: 127.0.0.1

 port: 35001

 rest: 8001

 wwwroot: /Users/spyroot/go/src/github.com/spyroot/rocinante/pkg/

template/

 - address: 127.0.0.1

 port: 35002

 rest: 8002

 wwwroot: /Users/spyroot/go/src/github.com/spyroot/rocinante/pkg/

template/

 - address: 127.0.0.1

 port: 35003

 rest: 8003

 wwwroot: /Users/spyroot/go/src/github.com/spyroot/rocinante/pkg/

template/

 pool:

 name: test

 # we indicate only one ip and let rest client discover cluster leader

 api:

 - address: 127.0.0.1

 rest: 8001

 grpc: 35001

 servers:

 - address: 127.0.0.1

 port: 8887

 - address: 127.0.0.1

 port: 8888

 - address: 127.0.0.1

 port: 8889

 global:

##Usags

 First we start prometheus server.

 #shell prometheus —config.file=$(GOPATH)/go/src/github.com/spyroot/

rocinante/prometheus.yml

 Than we can start all server.

   ```

    shell# ./rocinnante /Users/spyroot/go/src/github.com/spyroot/rocinante/

config.yaml

   ```

 Note you can start all server on same host but make sure you have different

ports.

 We can check metric directly. This metric server used by prometheus

   ```

    #shell curl http://localhost:2112/metrics

   ```

 We can check build in web server open http://localhost:8001

Example metric

curl http://localhost:2112/metrics

rocinante_append_rx_total 901

HELP rocinante_append_tx_total The total number of append tx events

TYPE rocinante_append_tx_total counter

rocinante_append_tx_total 108

HELP rocinante_committed_total The total number of vote tx events

TYPE rocinante_committed_total counter

rocinante_committed_total 0

HELP rocinante_submitted_total The total number of submit request events

TYPE rocinante_submitted_total counter

rocinante_submitted_total 0

HELP rocinante_vote_rx_total The total number of vote events

TYPE rocinante_vote_rx_total counter

rocinante_vote_rx_total 27

HELP rocinante_vote_tx_total The total number of vote tx events

TYPE rocinante_vote_tx_total counter

rocinante_vote_tx_total 9

Metric pushed to prometheus

We can monitor number of RPC message (Append / Vote) monitor in real time
convergence.

Sniffer usage.

Note you need root user. I’ve tested Mac OS and linux. Make sure libpcap installed.

 sudo ./sniffer --config /Users/spyroot/go/src/github.com/spyroot/rocinante/

config.yaml capture en0

When you start a sniffer, you should see sniffer serialize everything a cluster.

I0610 15:51:29.069630 8174 restclient.go:230] Sending request

cluster req [http://192.168.254.48:8002/submit/MTEzNDczMTMxNjYwNTU4ODc2ODU=/Df-

DAgEC_4QAAf-CAABH_

4EDAQEDSGRyAf-

CAAEFAQdTcmNQb3J0AQwAAQdEc3RQb3J0AQwAAQVTcmNJcAEMAAEFRHN0SXABDAABBVByb3RvAQwAAA

Bq_4QAAgEFM

zk1NjABBDgwMDIBDjE3Mi4xNi4xNDkuMjIzAQ4xOTIuMTY4LjI1NC40OAEDVENQAAEEODAwMgEFMzk1

NjABDjE5Mi4xNjguMjU0LjQ4AQ4x

NzIuMTYuMTQ5LjIyMwEDVENQAA==] cluster leader [192.168.254.48:8002]

Screenshots

The web server automatically discovers all nodes. We can shutdown entire server or gRPC
interface.

Classifier flows

All flow pushed from test sniffer app.

Roadmap

 Add integration with DPKD and Classifier and AF_XDP. Specifically port grpc client via C
binding and create capability to leverage DPKD classifier

 gRPC stream interface. Specfcally create indirection that will represent a key as descriptor
and allow client to write / read via IO interface.
 LSM for storage. Replace precision storage with LSM .

 Abstraction what we can store. i.e serialize radix etc tree as raw array.. For example a key
is root tree, the value serialized radix tree

 be able to O(1), log time lookup for longest match

 Optimization submit RPC. (Create event driven approach)

 Evaluate pre-vote semantics. RAFT has two additional proposal evaluate option.

