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Abstract

Simplified GFS is, as its name implies, a simplified ver-
sion of the Google File System. It is written in Python and
attempts to emulate the overall architecture and design of
the original Google File System while also maintaining a
level of simplicity for both client use and programmer devel-
opment. It allows a client to create, read, write, and delete
files within a distributed filesystem while also allowing for
recovery from both master and chunkserver failures.

1. Introduction

The motivation behind building simplified GFS was for
me to gain a deeper understanding of how to build dis-
tributed filesystems and how to ensure they are able to re-
cover from component failures. I was interested in build-
ing GFS in particular because I had previously interned at
Google on a team related to Colossus, which is the succes-
sor to GFS. The team I interned on was building a new client
reader for Colossus that aimed to make client reads cost un-
der 10 microseconds of CPU time. While I learned a lot
about the Colossus client, I regretfully didn’t get a chance
to learn much about the actual Colossus system while I was
there. This is why when I saw we were studying GFS, 1
jumped at the chance to actually build it and fully under-
stand the entire system that I had been working with previ-
ously.

My language of choice was Python, because although
my experience on Colossus had been in C++, I was far more
comfortable working in Python overall. Additionally, since
the aim of the project was more to learn about the over-
all system rather than to maximize performance, I believed
that the use of Python would allow me to iterate faster on
the code that I was to be writing at the cost of code perfor-
mance, as it is a much more programmer friendly language
than something like C++.

The emphasis on ease of use and/or development over
performance can be found in several other places within
Simplified GFS. For example, the standard GFS uses a

chunk size of 64MB and 3 replicas as its standard values.
While these numbers can be easily configured for simpli-
fied GFS, the standard numbers that I used were 64KB for
chunk size and 2 replicas. This greatly helped with ease
of testing and development, while still retaining all of the
essential components needed for functionality and fault tol-
erance.

I will structure the rest of the paper similarly to how the
original GFS paper was structured. This will allow me to
easily compare and contrast Simplified GFS as I differ from
the standard GFS operating procedure.

2. Design Overview
2.1. Assumptions

1. Like GFS, we assume that hardware can easily fail.
We must be able to recover easily from such failures,
although we do not assume that there is a monitoring
system in place.

2. We do not expect to have as many files or as large of
files as GFS does, but Simplified GFS should be able
to handle hundreds of files each of around 1MB in size.

3. We only allow writes to append to the end of an exist-
ing file within Simplified GFS. This is a stark departure
from GFS, which optimizes for append writes but still
supports random writes within files. This decision was
made to simplify the writing process, and I believe it is
justified since Google themselves say that they expect
a very small percentage of writes to be random writes.

4. Multiple clients may append to the same file simulta-
neously, but performance will be slow due to the de-
sign of the system. This will be elaborated on in the
challenges section.

2.2. Interface

The interface mostly follows the interface of GFS. There
is no explicit file hierarchy, and the file namespace is com-
pletely flat. However, files are still identified by pathnames,



and so a user can still build a hierarchical filesystem implic-
itly. We support creation, reading, writing, and deletion of
files. For create, the user specifies the file name to be cre-
ated. For read, the user specifies the filename to be read,
the offset to start reading from, and the amount to read. For
writes, the user specifies the filename to write to, the data
to write, and the offset within the file to start writing from
(which should correspond to the end of the file). For deletes,
the user specifies the filename of the file to delete.

2.3. Architecture

The architecture matches that of GFS. We have a single
master and multiple chunkservers. The master controls all
metadata for files within the system. The client will con-
tact the master whenever it wants to read from or write to
files, and the master will provide it with the necessary meta-
data to do so. Files are divided into chunks of size 64KB,
and chunkservers replicate those chunks for fault tolerance.
One main difference, as mentioned before, is that the de-
fault number of replicas for simplified GFS is 2 instead of
3. Finally, the master and chunkservers all communicate
with each other, both at an interval and on startup, in order
to exchange state information.

2.4. Single Master

Again, clients must contact the master server whenever
it wants to read from or write to files. For reads, the mas-
ter will respond with a list of chunkservers that the desired
chunk is on, which the client will then contact. The client
will cache this information for a pre-determined time pe-
riod, and this time period is reset every time the same data
is read. For writes, the master will respond with the lease-
holder (primary) for that chunk and also all replicas of that
chunk. The client also caches this lease information and
will only ask the master for a new lease whenever the pri-
mary responds that it is no longer the primary. All of these
help us avoid overloading the single master, as it is defi-
nitely a potential bottleneck in our system.

2.5. Metadata

The master stores similar metadata in Simplified GFS as
it does in GFS. It keeps track of a filename to chunk map-
ping as well as the chunk to replica list mapping. It stores
the file to chunk mapping persistently, but does not store the
chunk to replica list mapping persistently. Instead, it asks
chunkservers for their respective chunks whenever they join
the cluster.

The master also does a periodic background scan of
its metadata, in which it does garbage collection, checks
for missed heartbeats from chunkservers, and finally re-
replicates data if it notices a chunkserver is down.

Whenever the master stores data persistently, it does so
in its log, which is in essence a checkpoint for normal GFS.

This design choice vastly simplifies the necessary master
logging operations. We use Python’s pickle library to di-
rectly convert arbitrary Python objects into a serialized for-
mat that can be written to and read from disk.

In Simplified GFS, we write the filename to chunk map-
ping, the list of all currently connected chunkservers, and
the current chunk ID counter to disk. When the mas-
ter restarts from a crash, we can then recover our inter-
nal in-memory data structures by reading these data struc-
tures from disk. We write the list of currently connected
chunkservers persistently so we can poll them for their
chunk information whenever the master comes back up. We
write the current chunk ID counter to disk because the way
the master assigns chunk IDs is using a monotonically in-
creasing integer counter. If we remember what number this
counter was at, then we can avoid assigning a duplicate
chunk ID to different chunks.

2.6. Consistency Model

Simplified GFS also follows the relaxed consistency
model that GFS follows. Explicitly, since ’writes’ and
‘record appends’ in GFS are combined into a single opera-
tion in Simplified GFS, we guarantee in Simplified GFS that
a non-parallel write will return the offset that it was speci-
fied to be written at. However, if another client is writing to
the same chunk in parallel, then the returned offset may be
different from the specified offset. For example, if we spec-
ify ‘write(’test.txt’, ’test data’, 0)‘, then we are guaranteed
to return O for non-parallel writes. If there is another writer
writing to test.txt, then the returned number may not be 0.

In both cases, regardless of whether or not there is an-
other parallel writer or not, we are guaranteed that the data
written will be written starting at the offset returned by
write. So, in our above example, if the write returns 2, then
we are guaranteed to have ’test data’ start at offset 2 within
the file "test.txt’.

Simplified GFS also achieves consistent mutation order-
ing by having the primary choose a single ordering of paral-
lel mutations. Furthermore, it uses chunk version numbers
to detect stale replicas and chunk checksums to detect any
corrupt data.

3. System Interactions
3.1. Leases and Mutation Order

The lease mechanism that Simplified GFS uses is sim-
ilar to that of GFS. On write, a client will first request a
primary for that chunk from the master. If the master does
not have a primary for that chunk within its metadata, then
it will randomly assign one of the replicas as the primary.
The client then sends data to all of the replicas in any order.
Once that’s done, then the client tells the primary to apply
mutations. The primary will choose an ordering of the mu-



tations that it has received, apply them locally, then tell the
secondary replicas to apply their mutations in the primary’s
order.

Leases are given a set timeout by the master, and when
the lease expires, the old primary will tell the client this, and
the client will request another primary from the master. Cur-
rently, there is no lease extension mechanism implemented.

Whenever writes are large or cross chunk boundaries,
like GFS, Simplified GFS also splits writes into separate
operations per chunk.

3.2. Data Flow

We also attempted to imitate GFS’s data flow ideology.
This means that when we send data to replicas, this is done
in a line directly through all chunkservers. The client first
sends data to chunkserver 1, which then sends that data to
chunkserver 2, and so on. On the other hand, when actually
applying mutations, the client first tells the primary, which
then tells each secondary. Theoretically, this allows for us
to fully utilize the network bandwidth for each machine, but
in practice it lead to many more problems, which we will
describe in more detail in the challenges section.

4. Master Operation
4.1. Chunk Re-replication

Every time the master notices that a chunkserver is down,
it removes that chunkserver from all replica lists it is in.
During its regular background scan, the master checks each
chunk to see how many replicas it has. If it is below
the specified number of replicas, then it beings the re-
replication process. It can also begin re-replication due to a
chunkserver reporting that one of its chunks has been cor-
rupted.

Re-replication is performed by the master, which tells a
chunkserver (without the chunk to be replicated) to ask an-
other chunkserver (with the chunk to be replicated) to send
its data. The chunkserver with the chunk to be replicated
then sends it data to the chunkserver without the chunk to
be replicated.

4.2. Garbage Collection

Simplified GFS will also do lazy deletion whenever the
client deletes a file. This means that the file isn’t actually
deleted, but just renamed to a deleted name, meaning it can
still be read and recovered by renaming it back to the orig-
inal name. After a certain time period has elapsed, then the
master’s background scan will notice that its deletion pe-
riod has elapsed, then delete all metadata pertaining to that
chunk from its memory.

During heartbeats exchanged with each chunkserver, the
master will let each chunkserver know the chunk IDs of all
chunks that the chunkserver has but the master does not,

which then in turn allows the chunkservers to delete those
chunks from memory and disk.

4.3. Stale Replica Detection

For each chunk, the master keeps track of a version num-
ber. This version number is updated every time the master
assigns a new lease for that chunk. This version number is
used when a replica rejoins the cluster to see if that replica
missed any mutations to chunks while it was down. If so,
then its version number will be stale, and it will begin the
re-replication process stated above. The version number is
also used during the re-replication process to ensure that
chunkservers are only copying up-to-date chunks.

5. Fault Tolerance

This was one of my main learning goals for this project,
as it was a completely new area of systems for me, so it was
fascinating to build and learn about fault tolerance.

5.1. High Availability
5.1.1 Chunk Replication

Each chunk is replicated on 2 servers for availability, which
can easily be configured to 3. As mentioned before, any
time a chunkserver goes down, the master will notice in
its background scan (or whenever the client notices that the
chunkserver is down and notifies the master). Upon notic-
ing, it will immediately re-replicate this chunk to another
server, thus preserving availability for chunks.

When chunkservers restart, it reads its chunk files on disk
in order to recreate its in memory metadata. If it missed any
mutations, then it will notice this using its chunk version
numbers, which were also written to disk. If it didn’t miss
any mutations, then that chunkserver is just appended to the
list of replicas for a chunk.

5.1.2 Master Recovery

Currently, we do not replicate the master state using shadow
masters, as is done in standard GFS. We assume that the
master does not permanently fail, since we do not have any
monitoring infrastructure, and we assume that we are able
to easily recover from temporary master failures. It can re-
cover by simply reading its needed data structures from the
log that has been persistently written to disk.

5.2. Data Integrity

For every 64 bytes of a chunk, each chunkserver will
create a checksum of those bytes. It then uses this checksum
to verify all data in a given range whenever either a client
or another chunkserver attempts to read that data. When a
client writes data, we generate the checksum for each block
written, and append the checksum onto existing checksums



whenever the beginning of a checksum block has already
been written.

For simplicity, we use an ASCII-based checksum: each
character in a string is turned into its ASCII digit format,
then each digit is added up to form the checksum number.
The upside of this approach is that it is extremely easy to
calculate and does not require any external cryptography li-
brary to be imported. In fact, one of the reasons I settled on
this strategy was because I had originally started by import-
ing a hashing library in Python, but these hashes weren’t
able to be pickled by the pickle library when attempting to
write the checksums to disk.

Unfortunately, there are several downsides to this sim-
plified checksumming as well. First are the several security
concerns. Since an attacker can easily create an incorrect
message that adds up to the same amount as the checksum,
this type of checksumming does not fare well against ma-
licious attacks, as it can only reliably check for accidental
errors. Along the same line of reasoning, if there is an acci-
dental error that happens to end up with the same checksum
amount, then this will also not be detected. Secondly, since
we use a character’s ASCII value for checksumming, this
necessarily means that we can only handle ASCII charac-
ters being written.

6. Measurements

Here, 1 will showcase two benchmarks regarding read
and write throughput for Simplified GFS. Again, since the
focus of this was learning rather than performance, there do
exist significant bottlenecks within the system.

In order to avoid network latency and focus solely on
where the compute bottlenecks were in the system, the
benchmarks were performed locally on separate processes
within the same server. The server has a 2.5 GHz quad-core
processor, 16GB of memory, and 512GB of SSD storage.
Initially, the Simplified GFS cluster being tested on con-
sisted of 1 master, 4 chunkservers, and 10 clients. In sub-
sequent tests, the number of chunkservers was increased to
10 in order to examine the effect of number of servers on
system throughput.

6.1. Reads

We were able to get the best performance from reads.
For read tests, we used N=1 through 10 clients reading a
randomly selected 4KB region from a 10MB file 250 times.
This means that each client read a total of IMB over the
course of the benchmark. Figure 1 shows our results on a
Simplified GFS cluster containing 4 chunkservers.

Here, we can see that Simplified GFS peaks at a read
rate of around SMB/s. This seems to be a much earlier peak
than that of standard GFS, as in their graph, one can see
that even at 15 clients reading, the read rate trend is still
going upward. This could be due to the fact that we have
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Figure 2. Reads on 10 chunkservers

an unbalanced number of chunkservers and clients in our
testing scenario, as we see that the read rate increases all
the way up until around 4 clients, which is exactly the num-
ber of chunkservers in the cluster. Thus, my next test was
to test read throughput on a Simplified GFS cluster of 10
chunkservers and 10 clients. The results of this experiment
are shown in Figure 2.

Unfortunately, even in the case of 10 chunkservers in
the cluster, it looks like read performance is still capped at
around 5 MB/s. This makes sense because reads are com-
putationally very cheap to perform as the number of clients
increases, as each client only has to talk to the master once
per file that it is reading.
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6.2. Writes

We see definite signs of bottlenecking in our write per-
formance. For write tests, we used N=1 through 10 clients
each writing 1MB to a distinct file. Figure 3 shows our re-
sults on a Simplified GFS cluster containing 4 chunkservers.

For writes, we see that Simplified GFS peaks at around
1.5MB/s write rate, and then quickly drops to around
0.5MB/s. This could be due to the fact that writes re-
quire much more computation and coordination amongst
chunkservers, since chunkservers must send data to each
other and then apply it in separate rounds, and given our
lower number of chunkservers in our testing instance, this
effect is then amplified. Thus, it made even more sense
in this case to test write throughput on a cluster of 10
chunkservers as well. The results of this experimentation
are shown in Figure 4.

From the results of this benchmark, we can see that in-
creasing the number of chunkservers from 4 to 10 increases
the write throughput from 0.5MB/s to 2MB/s, which is great
to see! We also no longer see a significant drop in write
throughput after hitting 3 clients writing. This result also
makes sense, since as mentioned before, writes are much
more computationally expensive for chunkservers to per-
form, so adding more chunkservers helps greatly in evenly
distributing the computational load.

7. Challenges

While creating Simplified GFS, there were many signif-
icant challenges in design and development that I ran into.
Although fixing bugs resulting from these challenges was
extremely annoying, I found that I grew a lot in my un-
derstanding of distributed systems as a result of working
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Figure 4. Writes on 10 chunkservers

through them. Here, I will discuss two of the main chal-
lenges I ran into and what I learned from them.

7.1. Balancing GFS Design with Python

One large error that I made was following the design of
GFS too closely, given the fact that my choice of Python
made so many things inherently different between GFS
and Simplified GFS. A notable example of this is the
Python XMLRPC library, which is a standard RPC library
in Python that uses XML to encode data. I discovered
that this library was synchronous, meaning that for a given
chunkserver, only one RPC function could be in use at a
time. Any subsequent calls to any RPC function on that
chunkserver that occurred while a certain RPC function F
was running was forced to block until the function F termi-
nated.

As a result of this inherent synchrony, I decided it might
be beneficial to the simplicity of my design to make my im-
plementation lock-free and simply rely on the synchronous
nature of the XMLRPC library in order to prevent data
races. My error was that I should have changed the de-
sign of my implementation more to match this synchrony
assumption, rather than continue to blindly follow the origi-
nal GFS design. Many things would have been much easier
to implement and also would have had much better perfor-
mance, had I changed the design accordingly.

The best example of this is with the write functionality.
In standard GFS, they chose to first have the client send the
data being written to a chunkserver, which then forwards
the the data through all replicas linearly. In a second phase,
the primary then tells each replica to apply its mutations
in an order specified by the primary. I chose to implement
this functionality exactly. However, in Simplified GFS, the
following scenario regarding parallel writers then fails.



Imagine we have chunkservers A, B, and C, and 2 clients
writing to them. Client 1 sends data to all chunkservers
first, and that data is stored in their respective buffer caches.
Client 1 then tells the primary to apply mutations to its sec-
ondaries. Lets say that the primary is A, and the order in
which it contacts the secondaries to apply their mutations is
B then C. At this instance, if Client 2 begins to send data,
say starting from B to A to C, then we will deadlock. This
is because B will attempt to contact A while A is attempting
to contact B, but both are waiting for their respective RPC
functions to end.

T attempted to rectify this situation by forcing the sending
of data and application of mutations to always follow the
same order of chunkservers (ex. data must always be sent
from A to B to C and the primary must apply mutations for
B then C), but this also failed to prevent deadlock, because
the primary could be any chunkserver along a given chain
for sending data, and if it is in the middle of a chain, it will
lead to the same scenario mentioned above.

I felt that the easiest, albeit very hacky, solution to this
was to simply add an interrupt after a short duration of dead-
lock. Whenever no progress is being made and this dura-
tion has elapsed, the interrupt will fire and the sending of
data will restart. This successfully prevents deadlock at the
cost of extremely slow parallel writes due to constant inter-
rupts. This was the simplest solution that came to mind that
avoided having to re-architect the entire write system. If I
were to do this again, I would design the write process with
this in mind, and probably combine the sending of data and
application of data into one function. This would be both
significantly easier to implement and avoid the problem of
deadlock, which would lead to significantly better parallel
write performance.

7.2. Learning Fault Tolerance

Another overarching concept that I struggled with was
fault tolerance. Although I found it fascinating to learn
about, it was difficult to design systems with fault toler-
ance in mind, since I had so little experience working with
it before. In all of my other computer science classes, |
had always assummed that the underlying hardware would
never fail. Thus, as I began developing Simplified GFS, I
made the mistake of still holding on to that belief, and sim-
ply forgot to take into account that fault tolerance was a key
learning goal.

This came back to bite me later as I began building out
features for chunkserver replication and master recovery. In
many cases, I had to add ugly try/catch methods and while
loops in order to add bandages to places where chunkservers
could fail, but I had not thought about earlier. This lead to
several areas of ugly looking code and poor design. It also
lead to many bugs during development, as there were errors
that I had to slowly debug through, only to find that the er-

rors were due to some assumption of component longevity
I had made previously.

8. Future Work

There remains a great deal of work to be done for this to
become a fully functional distributed filesystem. There are
several notable features that I have not yet implemented.
These include parallel writes that cross chunk boundaries
(which can be implemented in a straightforward manner by
doing what GFS does, which is padding the chunk to the
end and doing the write on the next chunk), snapshot func-
tionality for copying directories (since we currently don’t
have explicit directories, this should be straightforward as
well, and can be done by copying metadata for a file and
making it point to the same existing chunk), extension re-
quests for leases (which should be piggybacked onto heart-
beat messages from chunkservers), and explicit hierarchical
directories. While the base functionality of Simplified GFS
has been implemented, the addition of these features would
be key in achieving full usability.

9. Conclusion

In summary, I believe this has been an excellent learn-
ing experience for me, as I’ve gained significant experience
building a distributed, fault tolerant file system. I now feel
better equipped to tackle distributed systems problems in
my professional life, as I'm armed with a deeper under-
standing of how exactly a prominent distributed filesystem
like GFS works under the hood.

Not only have I learned about the inner workings of GFS,
but I’ve also learned that when designing my own systems,
I need to think critically about what aspects of prior designs
I should include and what I shouldn’t, based on my knowl-
edge of the current situation. It’s not necessary to blindly
copy every feature, and in fact in many cases can be detri-
mental to my own systems.

Finally, I now have a lot better of an idea of how to build
systems with fault tolerance in mind. Knowing that compo-
nents can and will fail required a significant shift in mindset
for me, and now that I have experience tolerating and recov-
ering from these failures, I'll be able to more easily apply
these concepts to new situations.

10. Source Code

The source code for this project can be found at https:
//github.com/jason2249/gfs.
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