
Decentralized WebRCT P2P network using
Kademlia

Ryle Zhou
Stanford Univerisity

rylezhou@stanford.edu

Abstract—Web Real-Time Communication (WebRTC) is a new
standard and industry effort that extends the web browsing
model. For the first time, browsers are able to directly exchange
real-time media with other browsers in a peer-to-peer fashion.
Before WebRTC was introduced, it was cumbersome to build
smooth chat and video applications, users often experience
unstable connection, blurry videos and unclear sound. WebRTC’s
peer-to-peer communication paradigm establishes real-time con-
nection between browsers using SIP(Session Initiation Protocol)
Trapezoid. A wide set of protocols are bundled in WebRTC API,
such as, connection management, encoding/decoding negotiation,
media control, selection and control, firewall and NAT element
traversal, etc. However, almost all current WebRTC applications
are using centralized signaling infrastructure which brings the
problems of scalability, stability, fault-tolerance. In this paper,
I am presenting a decentralized architecture by introducing
Kademlia network into WebRTC to reduce the need of a
centralized signalling service for WebRTC.

Index Terms—WebRTC, P2P, Kademlia Network, Distributed
Systems

I. INTRODUCTION

In 2020, COVID-19 has changed all of our lives. Video
conferencing software are becoming essential to us. Because
of the pandemic, cloud video conferencing services have never
been more popular. With hundreds of millions of people
working from home, the need of having smooth, high-quality
voice and video chat systems that can support a large group of
people staying online together at the same time has increased
significantly. In this paper, I primarily explore the current
progress with WebRTC and briefly talk about the combination
of WebRTC and Kademlia Network with the purpose of
having a decentralized way for WebRTC Peers to establish
connections.

II. FUNDAMENTALS

A. WebRTC and its problem

1) WebRTC Infrastructure: WebRTC [2] stands for Web
Real-Time Communications. For the first time, browsers are
able to directly exchange real-time media with other browsers
in a peer-to-peer fashion. WebRTC leverages a set of plugin-
free APIs that can be used in both desktop and mobile
browsers, and is progressively becoming supported by all
major modern browser vendors. Previously, external plugins
were required in order to achieve similar functionality as is
offered by WebRTC. It includes a stack of protocols combined
together(see Fig 1). In order to establish a peer-to-peer com-
munication, web browsers must agree to begin communication,

know how to locate one another, bypass security and firewall
protections, and transmit all multimedia communications in
real-time. In the web application scenario, the server can
embed some JavaScript code in the HTML page it sends back
to the client. Such code can interact with browsers through
standard JavaScript APIs and with users through the user
interface.

Fig. 1. WebRTC protocol stack

In WebRTC, both browsers are running a web application,
which is downloaded from a different web server. Signaling
messages are used to set up and terminate communications.
They are transported by the HTTP or WebSocket protocol
via web servers that can modify, translate, or manage them
as needed. However, signalling is not implemented within
WebRTC and it is a part that was left for developers to build
based on different use cases(see Fig 2).

Fig. 2. WebRTC Infrastructure

2) Data Channel: The DataChannel API is designed to
provide a generic transport service allowing web browsers to
exchange generic data in a bidirectional peer-to-peer fashion.
The encapsulation of SCTP over DTLS over UDP together

with ICE provides a NAT traversal solution, as well as
confidentiality, source authentication, and integrity protected
transfers. Moreover, this solution allows the data transport to
interwork smoothly with the parallel media transports, and
both can potentially also share a single transport-layer port
number. SCTP has been chosen since it natively supports
multiple streams with either reliable or partially reliable de-
livery modes. It provides the possibility of opening several
independent streams within an SCTP association towards a
peering SCTP endpoint. Each stream actually represents a uni-
directional logical channel providing the notion of in-sequence
delivery. A message sequence can be sent either ordered or
unordered. The message delivery order is preserved only for
all ordered messages sent on the same stream. However, the
DataChannel API has been designed to be bidirectional, which
means that each DataChannel is composed as a bundle of an
incoming and an outgoing SCTP stream.

The DataChannel setup is carried out (i.e., the SCTP
association is created) when the CreateDataChannel() function
is called for the first time on an instantiated PeerConnection
object. Each subsequent call to the CreateDataChannel() func-
tion just creates a new DataChannel within the existing SCTP
association.

3) Peer Connection: The peer-to-peer connectivity is han-
dled by the RTCPeerConnection interface. A RTCPeerCon-
nection allows two users to communicate directly, browser
to browser. It then represents an association with a remote
peer, which is usually another instance of the same JavaScript
application running at the remote end. Communications are
coordinated via a signaling channel provided by scripting code
in the page via the web server, e.g., using XMLHttpRequest
or WebSocket. Once a peer connection is established, media
streams can be sent directly to the remote browser. Media
capture devices includes video cameras and microphones, but
also screen capturing ”devices”. For cameras and microphones,
the navigator.mediaDevices.getUserMedia() handles the Medi-
aStreams. For example, Peer 1 creates an offer and initiates
signalling with STUN/TURN server, and as a result, Peer
1 receives the ICE candidates. Both the offer and the ICE
candidates are sent to peer 2 through the signaling channel.
As soon as Peer 2 receives the offer, it creates an answer and
performs the same process and sends its connectivity informa-
tion through the same signaling channel back to Peer 1. After
the signaling is complete, both peers have all connectivity
information: answer, offer and both ICE candidates.

4) STUN AND TURN: The Session Traversal Utilities for
NAT (STUN) protocol (RFC5389) allows a host application to
discover the presence of a network address translator on the
network, and in such a case to obtain the allocated public IP
and port tuple for the current connection. To do so, the protocol
requires assistance from a configured, third-party STUN server
that must reside on the public network.

The Traversal Using Relays around NAT (TURN) protocol
(RFC5766) allows a host behind a NAT to obtain a public IP
address and port from a relay server residing on the public
Internet. Thanks to the relayed transport address, the host can

then receive media from any peer that can send packets to the
public Internet.

The RTCPeerConnection mechanism uses the ICE protocol
together with the STUN and TURN servers to let UDP-
based media streams traverse NAT boxes and firewalls. ICE
allows the browsers to discover enough information about the
topology of the network where they are deployed to find the
best exploitable communication path. Using ICE also provides
a security measure, as it prevents untrusted web pages and
applications from sending data to hosts that are not expecting
to receive them.

Each signaling message is fed into the receiving RTCPeer-
Connection upon arrival. The APIs send signaling messages
that most applications will treat as opaque blobs, but which
must be transferred securely and efficiently to the other peer
by the web application via the web server.

5) The problem with ICE, STUN AND TURN: STUN
servers live on the public internet and have one simple task:
check the IP:port address of an incoming request (from an
application running behind a NAT) and send that address back
as a response. In other words, the application uses a STUN
server to discover its IP + port from a public perspective. This
process enables a WebRTC peer to get a publicly accessible
address for itself, and then pass that on to another peer via a
signaling mechanism, in order to set up a direct link(see Fig
3).

Fig. 3. WebRTC Peer Connection

RTCPeerConnection tries to set up direct communication
between peers over UDP. If that fails, RTCPeerConnection
resorts to TCP. If that fails, TURN servers can be used as a
fallback, relaying data between endpoints. TURN servers have
public addresses, so they can be contacted by peers even if
the peers are behind firewalls or proxies. WebRTC-based P2P
networks always require two components PeerConnction: A
signaling mechanism to exchange the offer/answer messages
and the ICE candidates, and a STUN/TURN server to establish
connections from/to peers behind NATs. As a result, WebRTC
is behind centralized distributed systems that might be signal
point of failures, downtime, instability and other unreliable
problems.

B. Kademlia Network

Kademlia [1] is a distributed hash table for decentralized
P2P networks. It specifies the structure of the network and

the exchange of information through node lookups. Kademlia
nodes communicate among themselves using UDP. A virtual
or overlay network is formed by the participant nodes. Each
node is identified by a number or node ID. The node ID serves
not only as identification, but the Kademlia algorithm uses the
node ID to locate values (usually file hashes or keywords). In
fact, the node ID provides a direct map to file hashes and that
node stores information on where to obtain the file or resource.
In Kademlia, XOR metric is introduced to define a distance
between two nodes. The XOR distance is the bitwise exclusive
OR on the peers’ identifiers interpreted as an integer(see Fig
4).

Fig. 4. Kadenlia XOR Metric

When searching for some value, the algorithm needs to
know the associated key and explores the network in several
steps. Each step will find nodes that are closer to the key
until the contacted node returns the value or no more closer
nodes are found. This is very efficient: like many other DHTs,
Kademlia contacts only O(log(n)) nodes during the search
out of a total of n nodes in the system. For example, if there
are 10,000,000 Kademlia nodes, only about 20 hops would
be necessary at most for communication with any subset of
nodes. Kademlia based networks are highly resistant to denial
of service attacks and the loss of a group of nodes as the
protocol simply routes around the unavailable nodes.

Further advantages are found particularly in the decentral-
ized structure, which increases the resistance against a denial-
of-service attack. Even if a whole set of nodes is flooded,
this will have limited effect on network availability, since the
network will recover itself by knitting the network around
these ”holes”.

Another advantage of Kademlia is that the protocol naturally
prefers long-lived nodes over newer entrants. The process of
joining a Kademlia network requires discovery of only one
peer, whereby the node then broadcasts its appearance. The
initiator then collects the NodeID from each response and adds
it to its own peer table.

1) Kademlia NodeID: Kademlia treats each node on a
network as a leaf on a binary tree. Generally, each Kademlia
node has a 160-bit NodeID (SHA-1), and its position is
determined by the shortest unique prefix of its ID. To assign
key-value pairs to particular nodes, Kademlia relies on a
notion of distance between two identifiers. Given two 160-
bit identifiers, x and y, Kademlia defines the distance between

them as the XOR. From a node point of view, the tree is
divided into series of successive sub-trees where the 160th
subtree contains the individual node. The Kademlia protocol
ensures that each node knows of at least one node on each of
its sub-trees. With this guarantee, a node can locate any other
node by its ID.

2) Routing Table K-buckets: The routing table is a binary
tree whose leaves are k-buckets. The structure of the Kademlia
routing table is such that nodes maintain detailed knowledge of
the address space closest to them, and exponentially decreasing
knowledge of more distant address space. The symmetry is
useful since it means that each of these closest contacts will be
maintaining detailed knowledge of a similar part of the address
space, rather than a remote part. K-buckets are a list of routing
addresses of other nodes in the network, which are maintained
by each node and contain the IP address, port, and NodeID for
peer participants in the system. They prefer the longest-lived
nodes, which means that one cannot overtake a node’s routing
state by flooding the system with new nodes. The routing table
size is asymptotically bounded by O(log(n/k)) where n is the
actual number of nodes in the network and k is the bucket
size, so larger bucket implementations slightly reduce the total
number of buckets in the routing table.

The Kademlia protocol consists of four Remote Procedure
Calls :
PING: probes a node to see if it’s online.
STORE: instructs a node to store a key-value pair.
FIND NODE: returns information about the k nodes closest
to the target ID.
FIND VALUE: similar to the FIND NODE , but if the recip-
ient has received a STORE for the given key, it just returns
the stored value.

III. DECENTRALIZED WEBRTC WITH KADEMLIA

From the above section, I found that the ICE, STUN/TURN
part of WebRTC is used to deal with NAT traversal in a
centralized way. In this section, I bring up the notion that
connecting peers in WebRTC through a Kademlia network.
Although, the actual network might still be in a server network
owned by some companies. However, using Kademila can
create this WebRTC service in a decentralized way. To
join the network, local Peer A make a connection through
WebSockets to a node(system configuration, this node is
defined as a long-lived node) in Kademlia network and sends
a FIND NODE request that returns the k closest node to
the remote Peer B. Here, the node nominated in Kademlia
network acts as the signalling channel. The implementation
of Kademlia in AWS was actually chanllenging to me. I
encountered many bugs and a lot of details could go wrong. If
implementatd correctly, STUN/TURN server can be replaced
by the Kademlia network. And theoretically, through iterative
routing, the time to find the target node will be fast. To
evaluate this model, I thought about a few metrics to measure:

• RTCConnection time for each call session to establish
measured for 100 times

• Failure Rate (here failure means no connection was
established)

• Call Session time that had no dropped connection

IV. CONCLUSION AND FUTURE WORK

In this paper, I explored WebRTC work process, Kadem-
lia Network and the combination of the two technology in
order to create a decentralized chat service in a distributed
system. Because of the centralization nature of the of ICE,
STUN/TURN server and signaling channel, I thought it would
be a problem for to have a reliable tool for people. The
purpose is to reduce the risk of single point of failure and
establish a more reliable and available system. There are a lot
of technical challenges involved such as, deploying Kademlia
network on cloud, signalling configuration and the front end
implementation etc. Here, I did not explore how the security
of the network, which is a big concern among the public right
now.
My future work includes continue figuring out how well
Kademlia can work with WebRTC, possibly using a load
balancer to further test scalability. The possibility of extending
WebRTC to mobile devices is also worth taking into consid-
eration.

REFERENCES

[1] Maymounkov, P., and D. Mazières. ”Kademilia: A Peer-to-peer Informa-
tion System Based on XOR Metric, 1st Intl.” Workshop on Peer-to-Peer
Systems. 2002.

[2] Real-time communication for the web. https://webrtc.org/

