factoryOS - A Distributed and Self-Organizing
Planning System in a Supply-Chain Context

Department of Computer Science
Stanford University

andrej@stanford.edu
cchuanqi@cs.stanford.edu
nishantr@cs.stanford.edu
raok@stanford.edu

Abstract

Supply-Chain management systems deal with massive amounts of data. In today’s
scenario, with numerous inventories to track, they’re unable to work efficiently be-
cause 1. they are not fault-tolerant 2. their data is stored on a single database, and 3.
they require manual reconfiguration in case of errors. We introduce factory0S, a
distributed and self-organizing planning system that can cope with these challenges.
factory0s is robust to network delays and fault-tolerant, partitions inventory data
natively, and works without any manual intervention. Our novel design point is
that we’re able to guarantee uninterrupted production even with multiple failures.
With factory0S, partition shards are created natively and nodes handle their own
processes individually. Our experimental results show that factory0S can be
easily scaled to a large number of nodes and is fault-tolerant to a high degree of
failures. Code and scripts are available at FactoryOS.

1 Introduction

Given the trend of globalization, manufacturing processes are becoming more and more complex
[1]. For example, to produce one car, 30,000 individual parts need to be assembled. Most of
those parts are sourced from thousands of different third-party providers. A delay in just one
section of the supply chain can slow down the production and distribution of critical components
[2]. This issue is exacerbated by the fact that complex supply chains are extremely sensitive to
external political, economic, and environmental factors [3]. Also, consumers as well as producers
demand personalization of their purchased products, which makes the production of goods even more
complicated [4] due to rapidly changing requirements.

Therefore, managing every product’s supply chain can be a challenging task. Currently, most
companies centrally maintain and manage their own IT systems for supply chain management [5].
That leads to three challenges. First, supply chain systems need to handle cases when requirements
change for a product or when a node in the supply chain goes down. The status quo is to manually
reconfigure the transactions between different nodes or oversupply on specific parts to prevent a
slow-down. Second, current systems are usually not fault-tolerant. If one node goes down, the whole
system is stopped until the issue is found and fixed manually [6]. Third, many companies store all
their supply chain data in one single database with terabytes of data. This leads to bottlenecks with
high frequency database queries or high locking contention on the data [7].

In this paper, we aim to address all these three challenges with our distributed and self-organizing
supply-chain manufacturing system, factory0S. factory0S guarantees four system properties:

CS 244b Distributed Systems, Spring, 2020, California, USA.

https://github.com/raokrutarth/manufacturing-os

1. Robustness to network delays: The system is able to continue manufacturing even if there
are network delays.

2. Fault-Tolerance to node crashes: The system is fault-tolerant by making nodes only
depend on their neighbors. Even if the leader node crashes, nodes continue production while
a new leader is being elected.

3. Native Inventory Partitioning: Instead of having a large database of inventory history,
each individual node manages its own inventory data. Also, there is no need for a clever
algorithm to partition shards; the shards are created natively.

4. Uninterrupted Production without manual intervention: factory0S dynamically finds
viable flows in case a node crashes or if requirements for a node change.

2 Related Work

Supply Chain Networks are often modeled and analyzed using Petri nets and we use simplified
version of Petri Nets which can be extended with more stochastic characteristics of supply chains[8]
[9]. A multi-agent based approach is proposed to enable manufacturing systems to make fast and
frequent reconfiguration of the production systems [10]. Latest work in this area is Token-flow Supply
Chains: the Colored Petri-nets model of digital supply chain resolves the limitation of Petri-nets
to achieve the distinctness of markings, and "Distributed Leger System" manages all supply chain
transactions and digital events. With DLSs, each transactions are verified by a consensus of the DLSs’
participating nodes, once the consensus is reached and stored in all participating nodes, thus it solves
the limitation of single point of failure of centralized leger system. In contrast, our distributed system
automatically elects a central leader. This leader makes optimal decisions of how to reconfigure the
supply flow globally in case a node fails.

There are similarities between our system and Apache Kafka [11]. Both systems are structured in
clusters with producer and consumer APIs. However, in Kafka’s case, the sender can send messages
to Kafka, while the recipient gets messages from the stream published by Kafka. Kafka acts as a
central distributor. In our case, sender and recipients communicate directly with each other and our
system only steps in when the current flow needs to be changed.

3 Proposed Approach

3.1 Overview

This section covers the design of factory0S and its components. A production system in factory0S
consists of a set of nodes. We assume the existence of a fixed set of item types. Each node represents
a stage in the system consisting of the possible consumed and produced items within the supply
chain. There can be different producers of the same item type in our system, this is key in order to
support uninterrupted flow of production. Each node has a certain node-ID and needs certain items
as input requirements to be able to produce a resulting item. This dependency between two nodes
can be represented as an edge in the DAG. During initialization, we reach consensus on a possible
supply-chain flow. The agreed upon supply-chain flow can also be represented as a DAG. We’ll go
over each component in detail in the following sections.

An item requirement consists of a quantity and an item type. To take a simple example, a snippet of a
window production supply chain is show in Figure 1. A node with node-ID 1 needs three items of
type wood to produce five items of type window frame. A node with node-ID 2 needs two items of
type window frame to produce one item of type window. The actual production flow is computed by

incoming item
Type: Wood
Quantity: 3

outgoing item incoming item
Type: Frame Type: Frame
Quantity: 5 Quantity: 2

outgoing item
Type: Window
Quantity: 1

Node-ID: 1

Node-ID: 2

Figure 1: Snippet of a Window Production Supply Chain

a leader node and stored in a globally accessible way. During production, nodes query the flow to
identify from which specific nodes they should supply items and to which nodes they should send the

resulting items. In this way, each participating node in factory0S knows only about its neighbors
and the leader. Hence, each stage is responsible for making manufacturing decisions based on the
limited information the leader provides to the node instead of attempting to store and process the full
supply-chain state in a central data store. All communication that is required for production takes
place on a node-to-node basis without any leader participation.

By localizing the manufacturing decisions, factory0S guarantees three out of its four system
properties. First, the localization increases the robustness of the supply-chain management system
and ensures fault-tolerance. Each node in the supply-chain can crash, be delayed or be paused, for e.g.
maintenance, without having to halt the entire supply-chain. This is a core improvement to traditional
systems where an unavailable database can halt an entire factory. We’ll elaborate on this in Section
3.3.5. Second, localizing manufacturing processes reduces the dependency of having “fat servers”
that need to be scaled vertically in storage and computation as the system state increases in size.
factory0S makes each individual node manage its incoming inventory without a clever algorithm to
partition shards since the shards are created natively.

3.2 Flow

A crucial concept used by factory0S is the concept of flow. The flow represents the up-to-date
quantities and types of items being exchanged between the stages in the system. Extending the
previous example in Figure 2, a stage can “list” itself as a node that can supply a batch of up to
five frames. The downstream node does not need to consume all five frames. The flow in this case
will be set to 2 out of 5. The flow does not translate to the actual requirements of the item being
manufactured. It determines the batch sizes that the nodes are willing to exchange. So, the stage
producing windows might request frames every 30 minutes but output a window every 2 hours. That
decision is left up to the stage. After the leader has computed the flow and stored its instructions in a

incoming item
Type: Wood
Quantity: 3

outgoing item incoming item
Type: Frame Type: Frame
Quantity: 5 Quantity: 2,

Flow: Type Frame, Quantity 2

Figure 2: Flow between two nodes

outgoing item
Type: Window
Quantity: 1

Node-ID: 1

Node-ID: 2

globally accessible way, factory0S establishes the contract between the stages. It is left up to the
nodes to enforce the contract. In figure 2, the frame stage is free to deny a request from the window
stage if a batch of frames is not ready. In that case, the window stage is free to go back to the Leader
and ask for the flow to be adjusted or retry at a later point.

3.3 Implementation Details

Before diving into the operations that can be performed by factory0S, see figure 3 that outlines all
the essential components of the system. Our implementation is based on Python where we extensively
use Threads and Processes to simulate a geo-distributed cluster. We briefly go over the involved
components in the following sections.

3.3.1 Subscriber and Publisher

A cluster consists of different nodes, i.e. supply chain stages, that bind to a specific port. Each node
is a process that has a subscriber and publisher thread, which it uses to communicate with other
nodes. The publisher can broadcast messages or send them to specific nodes. The subscriber thread
consumes the messages and triggers a callback in the stage or heartbeat routines.

3.3.2 Leader

One node takes the role of a leader. Only the leader has the ability to compute and manipulate the
flow. We used a recursive, depth-first-search algorithm with memoization that starts at the end node
and traverses through nodes until it finds a viable path to reach the start node. This allows factory0S
to dynamically find viable flows in case a node crashes or if requirements for a node change. The
leader is elected through system file locks but can also be determined through services such as a

Port N+1

Cluster

/
Heartbeat

Op Op
Runner WAL Runner WAL

Node 1 Node 2 = LEADER

.O
%e /
\
|
|
/

Heartbeat

Zookeeper-like
configuration

Port 2 storage
2| |

i
i

Subscriber

Hear @

Op
Runner

Node 3 Node X

Heartbeat

Op
\ Runner

E %@

/

Port N+X

Figure 3: Implementation of factory0S where each node is a Python process using the file system
as configuration storage

configuration management service such as Zookeeper. In case the leader fails, we reelect the leader
once nodes detect the death through heartbeats.

3.3.3 Heartbeats

Each node also contains a heartbeat thread. Heartbeats are purely neighbor-based. This means that the
heartbeat thread uses the globally accessible flow graph and sends/receives heartbeats only to/from
nodes it trades parts with. This drastically reduces the number of messages exchanged within the
cluster. Heartbeats are used to detect crashes. For example, if a node does not receive a message from
a neighbor within a certain time range, the leader gets notified by the heartbeat thread and prompted
to recompute the flow. This means that only the node’s neighbors are a candidates for crash detection.

3.3.4 Stage

The Stage routine is responsible for producing, requesting and sending batches of items. Stage uses
different forms of signals to keep track of inventory. Every stage contains an inbound and outbound
queue of items, i.e. batches items that are ready to be consumed and sent respectively. These batches
are marked with a "in-queue" flag in the write-ahead log (WAL) in both the sending and receiving
node once the trade has occured.

To receive a certain item, a stage sends a RequestBatch to a valid neighboring upstream node. The
neighboring node can either send the item batch (denoted by a BatchSent) or respond that the item
batch is not available (denoted by a BatchUnavailable). In case the neighbor sends the batch, the
flag of this batch changes to “in-transit” in the WALs of both nodes. The downstream node also sends
a WaitingForBatch as an acknowledgement of the trade being commited. When the batch gets
delivered downstream, the receiving stage sends a DeliveryConfirmed message to the upstream
neighbor and the batch flag changes to “delivered” in the upstream node’s WAL (and “in-queue” in
the downstream node’s WAL. Once the batch is consumed by the downstream node, i.e. used to
produce a certain item batch, the flag of the item batch changes to “consumed” in the WAL.

Using inbound queues makes factory0S resistant to crashes and network delays. As long as there
are items in the queue, the stage can keep producing without interruption. Knowing this, the node’s
parameter can be tuned to keep a certain of buffer of inventory in case of a choppy network. If
neighboring nodes delay sending batches of item, nodes can bulk order items. As soon as the network
gets better, the node can go back to non-bulk orders.

3.3.5 Stage Recovery

The stage thread stores all its operations in a WAL to support recovery. Every time a batch changes
its status, e.g. from delivered to consumed, the stage routine persists this change in its WAL. In the
case a node crashes and gets back into the flow, the stage thread will try to recover the in-queue and
in-transit batches by restoring it from the WAL. In case a batch was in transit, the recovered node
re-sends the a message to the downstream node and the downstream node will reply with a delivery

confirmation in case the batch was already delivered. If it was not delivered, the down stream will
respond with a WaitingForBatch which will re-assert that the batch is in transit.

It is import to observe that the state of a batch is sequential, i.e. in-queue in the upstream node,
in-transit in both nodes and then in-queue and delivered in the downstream and upstream
node respectively. Therefore, any two nodes can agree on the state of the batch by picking the stage
that is later in the before mentioned order.

3.3.6 Operations Runner

An operations runner thread exists in every node. Operations are different from messages exchanged
between nodes. Their primary usage is to manually instruct a node to commit an action using an
external client from the main thread. Operations runner is exclusively for experimentation purposes,
where we require execution of multiple randomized operations e.g. Crashes, Recoveries, Updates.

3.3.7 Configuration Storage

Configuration in this case refers the potential inbound and outbound edges of a node, the flow
represented as a DAG of active edges, the current leader. Since this information should be eventually
consistent across all nodes, any distributed storage system that scales well for a high frequency of
reads on graph like data will suffice. For example, neo4j paired with Zookeeper for leader election.
Our implementation used atomic file storage with serialised Python objects given all nodes shared
the file system. Our configuration management APIs are designed in a way which makes it easy to
plugin popular services such as Zookeeper without any intrusive changes.

3.4 Operations

Using the described implementation of factory0S, we can perform multiple scenarios within the
supply chain context. factory0S supports node crashes, addition of nodes, requirement changes on
a node level, and live production rerouting in case a node has a maintenance operation. Given supply-
chains are extremely fragile, factory0S removes the challenge of interruptions during production.
In short, we’ll explain the node crash scenario using the example in figure 4. In case a node crashes,

2
=)

Hey Leader,
node is dead.

Window
Frame

Window
Frame

Window

Window

Window
Frame
Glass
(leader)

Glass
(leader)

one of its neighbors will detect that it doesn’t receive any heartbeat messages from the crashed node.
Due to lack of heartbeats, the neighbor will inform the leader that the crashed node is dead (1). The
leader will recompute the flow and update it in the globally accessible file storage (2). Once that is
done, the neighbors begin using the new flow. It is important to restate that all non-neighboring nodes
are still able to continue with production. All neighboring nodes dependent on the crashed node are
also able to continue in case they have enough batches of items produced by the crashed node in their
inventory.

Figure 4: Implementation of factory0S

4 Experiments

We model supply chains with two parameters: A/ and 7, where N (number of nodes in active flow)
is the depth of the supply chains and 7 is the number of alternative suppliers per product type.

To validate the system’s fault tolerance, we randomly kill nodes and then recover them. The failure
rate is defined as number of failure nodes per minutes and recover rate is defined as number of nodes
to be recovered in the simulation.

We use Dual Xeon Gold 6130 CPU with total 64 cores to run factory0S simulation. And the
simulation is run for 10 minutes for all size of supply chains.

4.1 Performance Metrics
Metrics that determine the efficiency/scale of the system include:

1. Successful Manufacture Cycles: Per node average of number of manufacturing cycles in
which a stage was able to successfully produce. A cycle includes consuming a item from all
the inbound queues and producing one batch of the resulting item.

2. Messages received and sent: Per node average of the number of messages sent and received.

3. Heartbeats Per node average of the number of heartbeat requests, responses sent and
received.

4.2 Evaluation

Refer to Figure 5 6 for the simulation of different size of factory0S, it demonstrates that the
factoryO0S is scalable to all size of global supply chains. But as N increases, total messages sent
and received grow, heartbeat messages (sent and received) grow, as a result the overall CPU usages
and memory consumption increases to exhaust our hardware, slowing response to heartbeat causes
neighbour nodes’ false report to leader about the death of nodes, leader reconfigure the flow. As a
result, the percentage of successful manufacturing cycle over total cycle decreases.

factoryOS Metrics vs. # Nodes

B Successful manufacture cycles (%) == Neighbor Detected Crashes

30.00% 1500
20.00% 1000 &
S
10.00% 500
S I = 4
5 10 15 25 30
Nodes

Figure 5: factoryOS scalability

5 Conclusion

Refer to Figure 7, this experiments demonstrates that factory0S is able to detect the dead nodes
and reconfigure the manufacturing flow using alternative suppliers. And it’s robust to maintaining the
successful manufacturing cycles even the rate of node crashes increases.

factoryOS metrics vs. # Nodes
B Heartbeats Sent + Received == Total Messages Sents == Total Messages Received

30000

20000

10000

Figure 6: factoryOS scalability

Successful manufacture cycles vs. # fails per minutes
125

100
75
50

25

Successful manufacture cycles

0 1 5 10 20 30 40 50 60

fails per minutes

Figure 7: factoryOS fault tolerance
6 Future Work

In the future, we want to extend our solution and include ZooKeeper for coordinating a distributed
configuration storage. Also, we plan to add proper leader election using Raft. Lastly, we strive to test
our system across multiple machines and networks to analyze our performance in a more realistic
setting.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

Saveen A Abeyratne and Radmehr Monfared. Blockchain ready manufacturing supply chain
using distributed ledger. 9 2016.

Alan Punter. Supply Chain Failures. 2013.
Tim Conor. Still waiting for nike to do it. 2001.

Marc Poulin, Benoit Montreuil, and Alain Martel. Implications of personalization offers on
demand and supply network design: A case from the golf club industry. European Journal of
Operational Research, 169(3):996 — 1009, 2006.

Zhimin Gao, Lei Xu, Lin Chen, Xi Zhao, Yang Lu, and Weidong Shi. Coc: A unified distributed
ledger based supply chain management system. Journal of Computer Science and Technology,
33(2):237-248, 2018.

Christopher Reining, Omar Bousbiba, Svenja Jungen, and Michael Ten Hompel. Data mining
and fault tolerance in warehousing. In Wolfgang Kersten, Thorsten Blecker, and Christian M.
Ringle, editors, Digitalization in Supply Chain Management and Logistics: Smart and Digital
Solutions for an Industry 4.0 Environment. Proceedings of the Hamburg Inter, volume 23 of
Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL),
pages 215-232. Hamburg University of Technology (TUHH), Institute of Business Logistics
and General Management, 2017.

Omed Habib. 5 Tricky Sql Database Performance Challenges. 2015.

N. R. Srinivasa Raghavan and N. Viswanadham. Performance analysis of supply chain networks
using petri nets. In Proceedings of the 38th IEEE Conference on Decision and Control (Cat.
No.99CH36304), volume 1, pages 57-62 vol.1, 1999.

Luis Alberto, Martinez Riascos, and Paulo Miyagi. Supervisor system for detection and
treatment of failures in manufacturing systems using distributed petri nets. IFAC Proceedings
Volumes, 34:83-88, 08 2001.

J. Barata, Luis Camarinha-Matos, Raymond Boissier, Paulo Leitdo, and Francisco Restivo.
Integrated and distributed manufacturing, a multi-agent perspective. 11 2001.

Jay Kreps. Kafka : a distributed messaging system for log processing. 2011.

	Introduction
	Related Work
	Proposed Approach
	Overview
	Flow
	Implementation Details
	Subscriber and Publisher
	Leader
	Heartbeats
	Stage
	Stage Recovery
	Operations Runner
	Configuration Storage

	Operations

	Experiments
	Performance Metrics
	Evaluation

	Conclusion
	Future Work

