
pDNS: a secure, private, decentralized P2P DNS

Kevin Baichoo, Tushar Dhoot, Vishal Ranjan
Stanford University

Abstract

We rethink what DNS can be, presenting pDNS, a P2P
DNS. pDNS enables users to remap their view of the
internet, explicitly trusting peers for particular mappings.
pDNS can be used to prevent censorship and to share pri-
vate mappings. Unlike DNS which adopted security as
an afterthought, pDNS is built with security and privacy
in mind, with features such as TLS and mutual TLS.

1 Introduction

The traditional DNS architecture was designed in the
1980s. While the current system has come a long way,
we believe that there have been some growing pains.
Some of the design decisions made in that context might
no longer be applicable. One example is the existence
of Root NameServers that hold a small 2MB file [5] and
add delay to DNS resolution.

Furthermore, the traditional system is centralized,
making it an easy target for censorship, and in some
sense clashing with the decentralized nature of the inter-
net. We re-imagine DNS in as a network of peer nodes,
allowing users to remap domain names to different IP ad-
dresses either through direct mappings that nodes know
themselves, or indirect mappings via trusted peers. Our
system would be resistant to censorship as nodes are
easy to spin up and users can easily swap out peers. In
effect, it would be a difficult game of ’whack-a-mole’.

In section 2 of the paper, we’ll discuss the backdrop
to which pDNS was designed. In section 3, we present a
high level system overview of pDNS. In section 4, we
dig into the design details of our system. In section 5,
we evaluate the requirements and performance of pDNS
and propose future work.

Figure 1: DNS Lookup for a example.com using the
traditional DNS

2 Background

Domain Names allow us to map human readable strings
to IP addresses. The Domain Name System (DNS) is the
mechanism by which we perform this mapping. There
are various DNS record types; the most widely used
records are A for IPv4 and AAAA for IPv6.

Below are the various steps to resolve a DNS record
using the current system (example depicted in Figure 1):

1



• (1) The browser sends a DNS request to the DNS
resolver. The resolver is typically an ISP’s resolver,
or an open resolver such as Cloudflare’s resolver.

• (2,3) The resolver will recursively resolve various
parts of the domain starting from the Top Level
Domain (TLD) downward. To resolve the TLD it
communicates with one of 13 DNS root servers, to
find the TLD server.

• (4,5) The resolver communicates with the TLD
server to find the authoritative name server for the
domain.

• (6,7) The resolver communicates with the authori-
tative name server to resolve the mapping of exam-
ple.com to it’s IP address.

• (8,9,10) The resolver responds to the browser’s
request, and the browser finally connects to exam-
ple.com.

The existing DNS is centralized and hierarchical,
which results in the following issues: susceptibility to
censorship, squatting of valuable namespace, limited ro-
bustness, and a lack of first-class support for security
and privacy.

Centralization of DNS fundamentally conflicts with
the decentralized nature of the Internet and can lead
to censorship. Examples include Turkey’s censorship
of Twitter [8], the Mirai Botnet cyberattack on Dyn-
DNS [9], and blocking of filesharing services such as
The Pirate Bay in Belgium [3]. The Great Firewall of
China is an example of censorship on a massive scale,
involving both DNS tampering and hijacking [12]. Cen-
tralization also results in authoritative mappings for ev-
ery domain name. While helpful in avoiding ambiguity,
authoritative mappings has been exploited by domain
squatters who take part in a "land-grab" of sorts by ac-
quiring valuable domain names in order to sell them later
at extortionate prices [10]. A single definition for a do-
main name also results in a lack of flexibility to local or
personal preferences. For example, the .gov TLD is man-
aged used exclusively by the US government regardless
of the location of the Internet user.

Robustness is also impacted by the high degree of
centralization and recent work has shown DNS may not
be as robust as previously thought. 80% of second level
domains have fewer than two named AuthServers [4].
Consequently, if those two authoritative name servers

are down, all of the domains under those servers cannot
be resolved. For performance, many researchers are sug-
gesting to remove Root Name Servers [5] and instead
distributing their mappings of TLDs to be maintained
by nearby resolvers, creating local mappings similar to
those in this paper.

Canonical DNS views security and privacy as an af-
terthought. DNS queries are sent in clear text, making it
possible for eavesdroppers and malicious actors to ob-
serve all DNS lookups made by a user. Recently, there
has been increasing adoption of DNS-over-TLS (DoT)
and DNS-over-HTTPS (DoH), with browser vendors
such as Firefox and Chrome leading the way. Unlike
HTTPS, which is widely used, this adoption still has
a long way to go. For example, Firefox’s DoH update
strained DNS resolver NextDNS as the load was too
much for their network to handle [6]. A distributed ap-
proach, such as pDNS, enables encrypted, private name
resolution without additional burden on central points
of failure.

3 System Overview

pDNS relies on a chain of trust which can be different
for different users based on how they want to perceive
the entire domain space. While multiple conflicting map-
pings are supported over all server, any one server must
have only one mapping for every domain name. The re-
sult of a DNS query depends entirely on the perspective
of the requesting server and whom they decide to trust.
This is depicted in Figure 2.

Each participating server is empowered to maintain
their own mappings or delegate resolution to peer nodes,
based on their preference or trust of other peer nodes.
This enables multiple, independently consistent, views
of DNS while decentralizing the whole system.

For simplicity, we have added support for Type A
records only in the current implementation. However
this can be easily extended to support AAAA and other
types of DNS records as well.

4 Design

4.1 Client

The client is written in Python and operates as a "DNS
Server" on localhost on the canonical DNS port 53. This
is a DNS server from the point-of-view of the operat-
ing system and not to be confused with the backend

2



Figure 2: Both Server 2 and Server 3 are added as trusted
contact in Server 1 for ‘edu‘ and ‘stanford.edu‘ domains
respectively. Domain resolution for ‘harvard.edu‘ and
‘web.stanford.edu‘ using most specific domain match.
Server 3 has a different view of google.com as compared
to Server 1 and Server 2.

server otherwise described in this paper. This configu-
ration allows for simple cross-platform DNS intercep-
tion as different platforms provide different hooks into
name resolution, whereas this solution is supported eas-
ily across platforms. Upon receiving a DNS request,
the client extracts the particular query and transforms it
into a protocol buffer that is transmitted using gRPC to
a backend server. gRPC is a high-performance, multi-
language transmission protocol and was a natural fit for
a high-throughput, low-latency system such as DNS [2].
The response from the server is then re-encapped into
a DNS response and returned to the original caller (for
example, the browser). The client is multi-threaded, en-
abling multiple concurrent DNS requests, which is nec-
essary as a single web page might issue dozens of DNS
requests.

4.2 Server

Our server is written in Java and can be run locally or
remotely. We use gRPC to service DNS requests from
clients and other peer nodes. Since domain resolution
can be done from both local mappings and in a P2P
fashion, there can be two types of connections in our
case: local (client-to-server) and P2P (server-to server).

We expose separate API endpoints for local and P2P
connections to allow for different access control settings,
although this has not been developed yet.

Before proceeding with details of the implementation,
we introduce terminology that we will be using:

• Trusted Contacts: peer servers which are trusted
by a server to resolve DNS for some specific
domains/sub-domains. Peers should have static IPs,
which encourages users to run their own personal
server remotely so they can continue to service re-
quests from their trusted contacts even when mov-
ing around.

• Direct Domain Mapping: host names which are
directly resolved from the local database and do
not need to contact a peer.

• Indirect Domain Mapping: host names for which
we rely on a peer (trusted contacts) to resolve.

4.2.1 Mappings

Each server maintains a list of mappings ("domain map-
pings") between domain name prefixes and either an IP
address or a peer. While we provide adapters so this map-
ping can be specified in several ways (flat files, database,
etc.), we relied on a flat JSON representation for the cur-
rent implementation. The mappings can optionally spec-
ify a "fallback" mapping - if no more specific mapping
exists, this mapping will be used. Fallback mappings are
useful to specify super-nodes, as described later.

Whenever the server receives a request (either from a
peer or from its own client), it first searches for the host
name in the direct domain mapping. If the mapping is
found, a response is immediately sent to the client. Oth-
erwise, a lookup is done by the domain resolver to find
a most specific match (see Figure 2) for the host name
based on the resource mapping using a tree-like data
model for efficiency. The request is then forwarded to
the matched peer node and the response is awaited. Cy-
cles are handled through a configurable limit on number
of P2P requests made for a single DNS request.

Each participating server is free to maintain any num-
ber of resource/domain mappings in any manner they
chose to resolve, based on their preference or trust factor
for other peer nodes. This way the DNS resolution is de-
centralized and users have the freedom to maintain their
own set of trusted list for different types of domains/sub-
domains. For example, an Indian citizen may choose to

3



have .gov domains resolved by the Indian Government’s
peer node or a Turkish user may choose to have Twitter
resolved by a trusted contact in the United States.

4.2.2 Caching

To decrease resolution latency, we have additionally im-
plemented a least-recently used (LRU) cache to store
peer-to-peer fetched DNS records. Expiration time is
configurable by the user and expired entries are dis-
carded and a fresh fetch is done. This cache has been
memory optimized by storing the required data com-
pactly when possible. Whether the cache is enabled and
its capacity are both user configurable, but we default to
cache enabled and a capacity of 1 million records. More
on this is covered later in the Evaluation section.

4.2.3 Traditional DNS Mapping

To support bootstrapping our system, we have further
implemented a special type of mapping that responds
to requests by proxying them to traditional DNS. We
created servers backed by this traditional DNS mapping
and configured them as our fallback nodes, making it
possible for us to immediately start using pDNS with no
change in user-visible behavior.

4.3 Security

Unlike traditional DNS, pDNS enables a secure con-
nection between clients and servers. The connection
between the client and server is encrypted and authen-
ticated using TLS. This prevents malicious actors from
man-in-the-middling messages between the client and
the server. TLS can be enabled for P2P server connec-
tions as well.

We support self-signed certificates for authentication
to remove the dependency on any third party certificate
authority. This aligns with our idea of having a decen-
tralized DNS where the chain of trust is not moderated
by third parties. The server’s self-signed certificate need
to be distributed out-of-band between users and made
accessible to the client. This does not present an addi-
tional burden as trusted contact mappings must already
be shared or authenticated out-of-band under pDNS.

In some cases (e.g., B2B, private servers), it is desired
to have a closed group of mappings which is not exposed
to a larger audience. This requires authentication of the
client so requests from outside this closed group can be
rejected. To enable this, we have implemented mutual

TLS (mTLS) authentication through gRPC. It ensures
that the traffic is secure and both client and server are
authenticated with each other. In this case, the client’s
self-signed certificate also needs to be shared out-of-
band and made accessible to the server.

mTLS can be enabled or disabled by the user, but we
strongly recommend to enable it only in cases where it
is desired to service requests from a closed group of net-
works. Two-way authentication can reduce throughput
and prevents the growth of generic canonical mappings
for certain websites which can be shared between peers.

4.4 Privacy

In traditional DNS, all requests are intercepted by infras-
tructure providers (of which there can be many) before
being resolved. It is trivial to observe and associate a
domain lookup request with the user making the request.
In pDNS, the lookup can be decentralized using different
trusted contacts for different domains/sub-domains and
therefore these central observation points are eliminated.
The user has the full freedom to choose their own set
of (and as many) trusted contacts leading to enhanced
privacy. In addition, pDNS’s first-class support of TLS
ensures requests cannot be read by malicious actors.

While resolving the resource for a specific domain,
pDNS retrieves the DNS record one hop at a time rather
than finding the end server and directly requesting a
DNS resolution from it. While the chain of trusted con-
tacts can lead to several hops on the network before the
domain name is resolved, it ensures your query can only
be associated to you by direct peers which you have
explicitly defined as trustworthy. In this way, we have
TOR-like [11] privacy in the system as the participating
nodes do not know about the origin of the request or the
final server which is resolving the DNS record from its
local domain mapping. Furthermore, there can be more
than one node which can take up the responsibility of
serving specific type of domains or sub-domains. As
usage of pDNS increases, it will become more and more
difficult to track the origin of the request/response as the
server can participate both as a local and global DNS
resolver. In this case, we explicit trade the small amount
of latency from extra hops for additional privacy.

4



4.5 Censorship Resistance

As there are no globally authoritative nodes, there is
no specific node in the network which can permanently
censor the resolution of a specific domain/host name.
As pDNS allows for easy reconfiguration and makes it
easy to stand up new nodes when one node is censored,
the impact of censorship is greatly reduced. It is also
possible for the user to remap domains held by squatters
in traditional DNS to more useful resources. In short,
the local mappings can always be modified to include
any volunteer/organisation who can provide a desired
way to resolve a host name.

5 Evaluation

5.1 Latency vs Hops

The latency of pDNS is > 20x faster than traditional
DNS for direct domain mappings and comparable for a
small (< 3) number of hops to peer nodes.

We measured the latency of a worst-case scenario: five
peers widely distributed across Germany, India, Japan,
Brazil, and the United States and with the LRU cache
entirely disabled. In each case, we requested a local
domain from the region. The results are shown in Figure
3.

As predicted, the latency and variance increases lin-
early with the number of hops. While the vast majority
of time is dominated by network latency to reach nodes
in geographically distant locations, increased network
latency is an acknowledged tradeoff of pDNS. In com-
parison, traditional DNS (represented by Google’s DNS
servers and Comcast’s DNS server) has a fixed cost re-
gardless of the domain name/TLD region.

In actual usage, we expect the cache to serve many
queries within a few hops, which results in comparable
latency to traditional DNS. In our own experience run-
ning pDNS to resolve DNS requests for web browsing
there was no observable slowdown.

5.2 Concurrent Requests

We benchmarked the number of concurrent requests that
could be handled by the server using Ghz, a gRPC bench-
marking tool [7]. We ran the experiment on a machine
with 16 cores and 42GB of memory. We ran Ghz using
200 workers, doubling the queries-per-second (QPS) of
each worker from 5 to 640. Ghz was configured to use up

Figure 3: Latency vs number of hops for pDNS and
Traditional DNS

to 12 cores, but generally used only two. In order to re-
duce network and CPU contention, the client connected
to the backend server using insecure gRPC channels for
a request that could be locally resolved. As a result, the
load was able to be handled by our server using two
cores. As shown in Figure 4, we are able to sustain 8K
QPS on our server backend using only 2 cores in these
conditions, with latency increasing as we go beyond
the 8K threshold. This workload stresses the amount of
gRPC connections our server could setup and respond to
since the requests were short lived. We believe that with
network variance and longer lived requests, our server
could support a higher QPS without adding significant
queuing on its end.

5.3 Memory Usage

There are two primary components of memory usage
in pDNS – the domain mappings & DNS Cache. Both
are expected to store millions of DNS records. We are
currently supporting only Type A records with an expiry
time, and all the memory calculation are based on it.

To benchmark memory usage, we used the Alexa Top
Sites API [1] and found the average size of top 1M host
names to be 18 chars. We conservatively assumed the
average size of host names to be 50 chars for all our
calculations.

The DNS cache is a memory-optimised LRU cache
which uses 150MB to store 1 million DNS records.
The cache stores IP addresses as int instead of string.

5



Figure 4: Tail Latency vs QPS

This leads to lower memory requirement with a minimal
computational cost for the int⇔string conversion while
fetching/pushing data into cache.

We also leveraged the concept of compact strings
introduced in Java 9 to further reduce our memory foot-
print. As we are dealing with large numbers of String
objects (millions of host names), we strongly recom-
mend using Java 9 (or higher) for better performance.

The memory impact of domain mappings, resource
mappings, DNS cache, the JVM, and worker threads are
listed in Figure 5. The RAM/CPU requirements vary
depending on the number of mappings. We have defined
three broad categories of nodes based on the number of
mappings to evaluate the feasibility of deployment for
widespread usage:

• Standard nodes: up to 50k hostnames resolved
directly, and depends on other nodes for DNS reso-
lution. Nodes operated by individuals are likely to
fall under this category.

• Super nodes: 10M hostnames resolved directly,
used indirectly by Standard nodes for many map-
pings. Nodes operated by small or domain-specific
organizations are likely to fall under this category.

• Super-Duper nodes: 100M hostnames resolved
directly. Usage can be thought similar to TLDs
in the traditional DNS, resolving the long-tail of

Figure 5: Memory required by different categories of
nodes

requests. Nodes operated by large organizations
(corporations, governments, non-profits) are likely
to fall under this category.

For standard nodes, the memory requirement is 325
MB which we believe is reasonable for running locally
or on a small cloud virtual machine.

Even for larger nodes, we note that the cost of running
such servers is not prohibitive (17.2 GB for Super-Duper
nodes). Thus, pDNS Super and Super-Duper nodes can
be easily stood up, making it a game changer for decen-
tralization.

6 Future Work

The implementation of pDNS described in this paper
provides a prototype that can be extended into a seri-
ous decentralization of DNS. Future work on this system
should include: support for other DNS record types, mak-
ing it easy to start using pDNS, through the traditional
DNS fallback described earlier and improving discov-
ery of peer nodes, supporting access control lists to en-
courage more control over nodes for small users, and
improving CPU and memory utilization to scale to even
larger nodes for organizations. With these changes, we
hope pDNS can achieve critical mass and the traditional
fallback can be deprecated entirely.

7 Conclusion

We present pDNS, a decentralized P2P DNS which en-
ables a user-specified, local mapping of the domain
space with security and privacy built in. We show that
such a system would be resistant to censorship. Lastly
we evaluate the performance of our system demonstrat-
ing comparable performance to traditional DNS and
present the requirements for different node types within
the system.

6



References

[1] Alexa - Top sites.

[2] gRPC - A high-performance, open source universal
RPC framework.

[3] BAF vs Belgacom and Telenet.

[4] ALLMAN, M. Comments on DNS Robustness.
In ACM Internet Measurement Conference (Nov.
2018).

[5] ALLMAN, M. On Eliminating Root Nameservers
from the DNS. In ACM SIGCOMM HotNets (Nov.
2019).

[6] BRINKMANN, M. Firefox 77.0.1 will be released
today to fix one issue - ghacks tech news, Jun 2020.

[7] D, B. ghz · simple grpc benchmarking and load
testing tool.

[8] FARID, F. Turkey has blocked wikipedia and is
censoring twitter, Apr 2017.

[9] HILTON, S. Dyn analysis summary of friday octo-
ber 21 attack: Dyn blog, 2016.

[10] HOGUE, R. What is domain squatting and what
can you do about it?, May 2019.

[11] MCCOY, D., BAUER, K., GRUNWALD, D., TA-
DAYOSHI, K., AND SICKER, D. Shining Light
in Dark Places: Understanding the Tor Network.
University of Colorado.

[12] XU, Y. Deconstructing the great firewall of china,
Apr 2019.

7


	Introduction
	Background
	System Overview
	Design
	Client
	Server
	Mappings
	Caching
	Traditional DNS Mapping

	Security
	Privacy
	Censorship Resistance

	Evaluation
	Latency vs Hops
	Concurrent Requests
	Memory Usage

	Future Work
	Conclusion

