Lecture context

- **FLP:** “pick \(\leq 2 \) of Safety, Liveness, Fault-tolerance\(^1\)”
- So far have sacrificed liveness (Paxos, Raft, PBFT)
 - Want safety, fault-tolerance always
 - Settle for termination *in practice* (and avoid stuck states)
 - *Partial* and *weak* synchrony can help (e.g., PBFT)
- **Two more ideas:**
 - Remove asynchronous assumption entirely [Byzantine generals]
 - Remove deterministic assumption
- **Learning goals for today**
 - Learn about randomized *asynchronous* protocols (how they work, pros, cons)
 - Give you lots of useful tools (threshold crypto, erasure coding, reliable broadcast, common coins, async. binary agreement, …)

\(^1\)in a *deterministic, asynchronous* protocol
Byzantine generals problem [Lamport’82]

- Commander G_0 sends a message to lieutenants $\{G_1, \ldots, G_n\}$
 - Either all honest generals must attack, or all must retreat
 - Some generals could be faulty, including commander
 - But non-faulty nodes communicate in time T by everyone’s clock
 (So $T - \epsilon$ real time to account for clock skew)

- First insight: w/o digital signatures, need more than 3 nodes
 - Else, G_1 and G_2 can’t prove to each other what commander said
Byzantine generals w. signatures

- **Warm-up exercise: 0 faulty generals**
 - G_0 broadcasts digitally signed order
 - Other nodes wait T seconds, then follow order

- **If $\leq f$ faulty generals, go through $f + 1$ rounds ($0, \ldots, f$):**
 - Round 0: G_0 broadcasts signed order $\langle v \rangle_{G_0}$
 - Round 1: Each other G_i re-signs, broadcasts $\langle \langle v \rangle_{G_0} \rangle_{G_i}$
 - Round r: For each m received in $r - 1$ with new value v
 - G_i ensures m has $r + 1$ nested signatures of different nodes (or ignores)
 - Adds own signature, broadcasts $\langle m \rangle_{G_i}$ ($r + 1$ nested sigs)
 - After round f, G_i receives 0 or more valid messages
 - Deterministically combine values and output result (e.g., take median or default to retreat if 0 valid messages)

- **N nodes survives f failures even if $N = f + 2$ (no 1/3 threshold)**
 - But loses safety if synchrony assumption is violated
 - That’s why most systems use partial/weak synchrony
Randomized protocols

• FLP proof considers delivering messages m and m' in either order
 - Assumes if different recipients, either order leads to same state
 - But logic only holds if messages are processed deterministically

• Paxos, Raft, PBFT “never get stuck”
 - Means there’s always some network schedule that leads to termination
 - So keep trying “rounds” (views, ballots, terms, etc.) until one terminates

• Non-termination assumes network is adversarial

• If were random, could have round termination probability
 - Unfortunately, network typically can be controlled by adversary
 - But adversarial network can’t predict randomness
 - So can we make probability dependent on nodes’ random choices?
Asynchronous Binary Agreement (ABA)

- Simplest goal (agree on a single bit) still violates FLP
 - Ben Or first proposed sidestepping FLP with randomness…
- N nodes ($\leq f$ faulty) each receive one bit input $\{0, 1\}$
 - Exchange messages and (ideally) output a bit
- Goals:
 - Agreement – if any non-faulty node outputs b, none outputs $\neg b$
 - Termination – if all non-faulty nodes receive input, all output a bit
 ▶ Since randomized, can terminate with probability 1
 ▶ E.g., infinite rounds each with finite termination probability
 - Validity – if all correct nodes received input b, decision will be b
 ▶ Otherwise, okay to decide either 0 or 1
function $\text{BENOR-ABA}(i, x)$
\(\triangleright i \) is local node id, \(x \) is input bit

\[
\text{for } r \leftarrow 0; \; ; r \leftarrow r + 1 \text{ do}
\]

broadcast $\langle \text{VOTE}, i, r, x \rangle$

await VOTE from $N - f$ distinct i
\(\triangleright \) including self

if $\exists v$ s.t. more than $(N + f)/2$ VOTES have $x = v$ then

broadcast $\langle \text{COMMIT}, i, r, v \rangle$

else

broadcast $\langle \text{COMMIT}, i, r, ? \rangle$

await COMMIT from $N - f$ distinct i
\(\triangleright \) including self

if $\exists v \neq ?$ s.t. at least $f + 1$ COMMITS contain v then

$\xleftarrow{\text{random bit}}$

if more than $(N + f)/2$ COMMITS contain v then

output v

else

$x \leftarrow \text{random bit}$

• Claim: BENOR-ABA survives f Byzantine faults for $N > 5f$ nodes
Ben Or analysis

- \(> (N + f)/2 \) nodes includes a majority of non-faulty nodes
 - Majority of non-faulty nodes is \(> (N - f)/2 \) non-faulty nodes
 - Plus \(f \) faulty nodes means \(> (N - f)/2 + f = (N + f)/2 \)
- Hence, in a round, all non-faulty must COMMIT same \(v \neq ? \)
 - But some or all non-faulty nodes may COMMIT \(? \) instead
- If receive \(f + 1 \) COMMIT \(v \neq ? \), know \(v \) must be correct
 - After all, at most \(f \) of those nodes will be lying
- Say you receive COMMIT \(v \) from \(C \) nodes where \(C > (N + f)/2 \)
 - Each other node will see at least \(C - 2f \) COMMITs for \(v \)
 - because \(f \) of your \(C \) could double-vote, and another \(f \) could be slow
 - But since \(N > 5f \), \(C - 2f > (N + f)/2 - 2f > (5f + f)/2 - 2f = f \)
 - So every other non-faulty node will see at least \(f + 1 \) COMMITs for \(v \)
 - Means all other non-faulty nodes will terminate in next round
- Say you don’t see \(f + 1 \) COMMITs and flip a coin
 - Could luck out and have all non-faulty nodes flip same value
 - So protocol guaranteed to terminate eventually with probability 1!
So why not use Ben Or instead of PBFT?

- Only agrees on one bit, not arbitrary operation
- Exponential expected #rounds required when flipping coins

What if $N - f$ nodes got together and all flipped the same coin?

- Some honest nodes might see $f + 1$ COMMIT v_r, some not
- But all who do will see the same v_r in round r

Let v'_r be the "common coin" flip

- If $v'_r = v_r$, protocol terminates in round $r + 1$

Would it work to say rth coin flip is rth digit of π in binary?

- No
- Problem: Adversary knows v'_r in advance and can influence v_r

- Arrange for $N - f - 1$ to see $f + 1$ COMMIT $\neg v'_r$ in round $r - 1$

- Ensures $v_r \neq v'_r$, allows same manipulation for round $r + 1$

- Never terminates so long as adversary is lucky in round 0

What if adversary doesn't know v'_r in advance?
Ben Or practicality

- So why not use Ben Or instead of PBFT?
 - Only agrees on one bit, not arbitrary operation
 - Exponential expected #rounds required when flipping coins

- What if $N - f$ nodes got together and all flipped the same coin?
 - Some honest nodes might see $f + 1$ COMMIT v_r, some not
 - But all who do will see the same v_r in round r
 - Let v'_r be the “common coin” flip
 - If $v'_r = v_r$, protocol terminates in round $r + 1$

- Would it work to say rth coin flip is rth digit of π in binary?
Ben Or practicality

- So why not use Ben Or instead of PBFT?
 - Only agrees on one bit, not arbitrary operation
 - Exponential expected #rounds required when flipping coins

- What if \(N - f \) nodes got together and all flipped the same coin?
 - Some honest nodes might see \(f + 1 \) COMMIT \(v_r \), some not
 - But all who do will see the same \(v_r \) in round \(r \)
 - Let \(v'_r \) be the “common coin” flip
 - If \(v'_r = v_r \), protocol terminates in round \(r + 1 \)

- Would it work to say \(r \)th coin flip is \(r \)th digit of \(\pi \) in binary? No
- Problem: Adversary knows \(v'_r \) in advance and can influence \(v_r \)
 - Arrange for \(N - f - 1 \) to see \(f + 1 \) COMMIT \(\neg v'_r \) in round \(r - 1 \)
 - Ensures \(v_r \neq v'_r \), allows same manipulation for round \(r + 1 \)
 - Never terminates so long as adversary is lucky in round 0

- What if adversary doesn’t know \(v'_r \) in advance?
Common coin [Rabin’83]

- **Tool: t-of-N threshold cryptography**
 - Public key algorithm, using standard public key (e.g., RSA)
 - Private key broken into N shares, with t required to sign/decrypt

- **Tool: deterministic/unique digital signature schemes**
 - Only one possible signature per public key and message
 - E.g., RSA full-domain-hash, BLS. (Non-examples: Schnorr, DSA)

- **Idea: let coin $v'_r = \langle r \rangle_K \mod 2$ for deterministic signature**
 - Private key K^{-1} split among agents with $(N - f)$-of-N threshold
 - Now v'_r unpredictable, but computable by any $N - f$ nodes

- **Limitation: setting up common coin requires trusted dealer**
 - Or can use fancy crypto, but requires synchronous protocol
function \texttt{BenOrCC-ABA}(i, x) \quad \triangleright i \text{ is local node id, } x \text{ is input bit}

\begin{align*}
\text{for } r \leftarrow 0; \quad ; r \leftarrow r + 1 \text{ do } \\
\quad \text{if } \exists v \neq ? \text{ s.t. at least } f + 1 \text{ COMMITs contain } v \text{ then } \\
\quad \quad x \leftarrow v \\
\quad \quad \text{if more than } (N + f)/2 \text{ COMMITs contain } v \text{ then } \\
\quad \quad \quad \text{output } v \\
\quad \text{COMMONCOIN}(r) \quad \triangleright \text{ participate but discard result}
\end{align*}

\text{else}

\begin{align*}
\quad x \leftarrow \text{COMMONCOIN}(r) \quad \triangleright \text{ implicit private key share arg.}
\end{align*}

• Note Rabin proposed a different trick for common coin

 - If bad network knows you need \((N + f)/2\) votes to decide, can ensure some nodes see over, some under threshold

 - So use common coin to select threshold from \(\{N/2, N - 2f\}\)

 - Repeat \(R\) times, but only safe with probability \(1 - 2^{-R}\)
Reliable broadcast (RBC) [Bracha]

- **Sender** P_S has input h to broadcast to $N > 3f$ nodes $\{P_i\}$

- **Want:**
 - *agreement* – all non-faulty node outputs are identical
 - *totality* – all non-faulty nodes output a value or none terminate
 - *validity* – if P_S non-faulty, then all non-faulty nodes output h

- **Protocol**
 1. P_S broadcasts $\text{VAL}(h)$
 2. P_i receives $\text{VAL}(h)$, broadcast $\text{ECHO}(h)$
 3. P_i receives $N - f$ $\text{ECHO}(h)$ messages, broadcasts $\text{READY}(h)$
 4. P_i receives $f + 1$ $\text{READY}(h)$, broadcasts $\text{READY}(h)$ [if hasn’t already]
 5. P_i receives $2f + 1$ $\text{READY}(h)$, delivers h
RBC analysis

• Protocol
 1. P_S broadcasts $\text{VAL}(h)$
 2. P_i receives $\text{VAL}(h)$, broadcast $\text{ECHO}(h)$
 3. P_i receives $N - f$ $\text{ECHO}(h)$ messages, broadcasts $\text{READY}(h)$
 4. P_i receives $f + 1$ $\text{READY}(h)$, broadcasts $\text{READY}(h)$ [if hasn’t already]
 5. P_i receives $2f + 1$ $\text{READY}(h)$, delivers h

• $N - f$ nodes includes majority of non-faulty nodes
 - READY from all non-faulty nodes has same $h \implies$ agreement
 - If P_S non-faulty, will all contain P_S’s input $h \implies$ validity

• If $2f + 1$ nodes send $\text{READY}(h)$, then $f + 1$ will be non-faulty
 - Those $f + 1$ will make all non-faulty nodes to broadcast $\text{READY}(h)$
 - Since $N > 3f$, will get $2f + 1$ broadcasting $\text{READY}(h) \implies$ totality
Refining RBC

- Why doesn’t RBC directly give us consensus?
 - Each node RBCs its input; take median (like Byz. generals)
Refining RBC

- Why doesn’t RBC directly give us consensus?
 - Each node RBCs its input; take median (like Byz. generals)
 - Don’t know when RBCs are done (else would violate FLP)

- What if h is big and P_s has to send many copies?
Refining RBC

• Why doesn’t RBC directly give us consensus?
 - Each node RBCs its input; take median (like Byz. generals)
 - Don’t know when RBCs are done (else would violate FLP)

• What if h is big and P_S has to send many copies?

• Tool: Erasure coding
 - Turns t-block msg into N blocks, such that any t encoded blocks are sufficient to reconstruct msg
 - Example: use interpolation on $(t - 1)$-degree polynomial

• Tool: Merkel tree
 - Let $h = H(b)$
 - Can verify any b_{ij} from h and path in tree
Refining RBC (continued)

- Change protocol to send \texttt{VAL}(h, b_i, s_i), broadcast \texttt{ECHO}(h, b_i, s_i)
 - \(s_i\) is share of message, \(b_i\) is proof that it is in hash tree with root \(h\)

- Wait for \(N - f\) \texttt{ECHO} messages that permit reconstruction before sending \texttt{READY}(h)
 - Guaranteed after \(2f + 1\) \texttt{READY}(h)

- Idea: use techniques from RBC to improve ABA
 - Know an input \(b\) is valid if you received it
 - Also know \(b\) is valid if \(f + 1\) nodes received it
 - Everyone will learn \(b\) is valid if \(2f + 1\) nodes say it is
 - Even if \(f\) fail, \(f + 1\) will continue to vouch for \(b\)
function MOSTÉFAOUI-ABA(i, x)

for $r \leftarrow 0$; $r \leftarrow r + 1$ do

values $\leftarrow \emptyset$ \quad \triangleright \text{values everyone will consider valid}

broadcast $\langle \text{VALID}, i, r, x \rangle$

when $\exists v$ s.t. received $\langle \text{VALID}, i', r, v \rangle$ from $f + 1$ distinct i'

broadcast $\langle \text{VALID}, i, r, v \rangle$ if haven’t already

when $\exists v$ s.t. received $\langle \text{VALID}, i', r, v \rangle$ from $2f + 1$ distinct i'

values \leftarrow values $\cup \{ v \}$

when $\exists w \in$ values and haven’t sent VOTE yet

broadcast $\langle \text{VOTE}, i, r, w \rangle$

when received $N - f$ valid VOTES (valid means $w \in$ values)

$s \leftarrow \text{COMMONCOIN}(r)$

if all $N - f$ valid VOTES contain the same value b then

$x \leftarrow b$

if $b = s$ then output b

else

$x \leftarrow s$
Asynchronous common subset (ACS)

- N nodes $\{P_i\}$ get input, all output subset of inputs. Want:
 - **validity** – any non-faulty node output contains $N - 2f$ non-faulty node inputs
 - **agreement** – if any non-faulty node outputs set V, all output same set V
 - **totality** – if $N - f$ non-faulty nodes get input, all non-faulty produce output

Node i submits v_i to RBC_i

while (fewer than $N-f$ RBCs have delivered a value
 && fewer than $N-f$ ABA instances have output 1) {
 if (RBC$_j$ delivers v_j)
 Supply 1 as input to ABA$_j$
}

Supply 0 as input to any remaining ABAs

Output $\{ v_j \mid \text{ABA}_j \text{ output 1} \}$ [waiting for RBCs if needed]

- Why does this ACS work?
Node i submits v_i to RBC_i
while (fewer than $N-f$ RBCs have delivered a value
 && fewer than $N-f$ ABA instances have output 1) {
 if (RBC$_j$ delivers v_j)
 Supply 1 as input to ABA$_j$
}
Supply 0 as input to any remaining ABAs
Output $\{ v_j \mid ABA_j$ output 1 $\}$ [waiting for RBCs if needed]

- RBCs and ABAs output same at all non-faulty nodes \implies agreement
- $N - f$ RBCs will deliver value (by totality of RBC) \implies totality
 - All nodes will exit the while loop
 - If $ABA_j = 1$ at any non-faulty node, then RBC_j will deliver v_j
- At least $N - f$ ABAs must output 1 \implies validity
 - Hence at least $N - 2f$ must correspond to non-faulty nodes
• **Strawman 1:**
 - Each P_i uses RBC to broadcast B oldest transactions
 - Use ACS to pick $N - f$ and take union of transactions
 - Problem?
Consensus from RBC and ACS

- **Strawman 1:**
 - Each P_i uses RBC to broadcast B oldest transactions
 - Use ACS to pick $N - f$ and take union of transactions
 - Problem? Wastes lots of bandwidth sending B around

- **Strawman 2:**
 - P_i uses RBC on random $\lfloor B/N \rfloor$-sized subset of B transactions
 - ACS as before
 - Problem?
Consensus from RBC and ACS

- **Strawman 1:**
 - Each P_i uses RBC to broadcast B oldest transactions
 - Use ACS to pick $N - f$ and take union of transactions
 - Problem? Wastes lots of bandwidth sending B around

- **Strawman 2:**
 - P_i uses RBC on random $\lfloor B/N \rfloor$-sized subset of B transactions
 - ACS as before
 - Problem? Network can censor victim transaction

- **Solution?**
Consensus from RBC and ACS

• **Strawman 1:**
 - Each P_i uses RBC to broadcast B oldest transactions
 - Use ACS to pick $N - f$ and take union of transactions
 - Problem? Wastes lots of bandwidth sending B around

• **Strawman 2:**
 - P_i uses RBC on random $\lfloor B/N \rfloor$-sized subset of B transactions
 - ACS as before
 - Problem? Network can censor victim transaction

• **Solution? Use threshold encryption**
 - Each node RBCs threshold encryption of $\lfloor B/N \rfloor$ transactions
 - Only decrypt *after* ACS complete
 - Threshold allows decryption even if sender fails
Algorithm HoneyBadgerBFT (for node P_i)

Let $B = \Omega(\lambda N^2 \log N)$ be the batch size parameter.
Let PK be the public key received from TPKE.Setup (executed by a dealer), and let SK_i be the secret key for P_i.
Let $buf := \emptyset$ be a FIFO queue of input transactions.
Proceed in consecutive epochs numbered r:

// Step 1: Random selection and encryption

- let proposed be a random selection of $\lfloor B/N \rfloor$ transactions from the first B elements of buf
- encrypt $x := \text{TPKE.Enc}(PK, \text{proposed})$

// Step 2: Agreement on ciphertexts

- pass x as input to $\text{ACS}[r]$ // see Figure 4
- receive $\{v_j\}_{j \in S}$, where $S \subset [1..N]$, from $\text{ACS}[r]$

// Step 3: Decryption

- for each $j \in S$:
 - let $e_j := \text{TPKE.DecShare}(SK_i, v_j)$
 - multicast $\text{DEC}(r, j, i, e_j)$
 - wait to receive at least $f + 1$ messages of the form $\text{DEC}(r, j, k, e_{j,k})$
 - decode $y_j := \text{TPKE.Dec}(PK, \{(k, e_{j,k})\})$

- let $\text{block}_r := \text{sorted}(\bigcup_{j \in S}\{y_j\})$, such that block_r is sorted in a canonical order (e.g., lexicographically)
- set $buf := buf - \text{block}_r$.
Would you use HoneyBadgerBFT for a network file system like BFS?

- High throughput with many replicas, big batch sizes
- No need to worry about tuning timeouts
• Would you use HoneyBadgerBFT for a network file system like BFS?
 - No - very high latency (10s of seconds) would give unusable performance
 - Also doesn’t take advantage of physical-layer multicast

• Why use HoneyBadgerBFT instead of PBFT?
Discussion

• Would you use HoneyBadgerBFT for a network file system like BFS?
 - No - very high latency (10s of seconds) would give unusable performance
 - Also doesn’t take advantage of physical-layer multicast

• Why use HoneyBadgerBFT instead of PBFT?
 - High throughput with many replicas, big batch sizes
 - No need to worry about tuning timeouts