
Lecture context

• FLP: “pick≤ 2 of Safety, Liveness, Fault-tolerance1”
• So far have sacrificed liveness (Paxos, Raft, PBFT)

- Want safety, fault-tolerance always
- Settle for termination in practice (and avoid stuck states)
- Partial and weak synchrony can help (e.g., PBFT)

• Two more ideas:
- Remove asynchronous assumption entirely [Byzantine generals]
- Remove deterministic assumption

• Learning goals for today
- Learn about randomized asynchronous protocols (how they work,

pros, cons)
- Give you lots of useful tools (threshold crypto, erasure coding,

reliable broadcast, common coins, async. binary agreement, . . . )
1in a deterministic, asynchronous protocol

1 / 20



Byzantine generals problem [Lamport’82]

• Commander G0 sends a message to lieutenants {G1, . . . ,Gn}
- Either all honest generals must attack, or all must retreat
- Some generals could be faulty, including commander
- But non-faulty nodes communicate in time T by everyone’s clock

(So T − ϵ real time to account for clock skew)
• First insight: w/o digital signatures, need more than 3 nodes

- Else, G1 and G2 can’t prove to each other what commander said
2 / 20

https://lamport.azurewebsites.net/pubs/byz.pdf


Byzantine generals w. signatures

• Warm-up exercise: 0 faulty generals
- G0 broadcasts digitally signed order
- Other nodes wait T seconds, then follow order

• If≤ f faulty generals, go through f + 1 rounds (0, . . . , f ):
- Round 0: G0 broadcasts signed order ⟨v⟩G0

- Round 1: Each other Gi re-signs, broadcasts ⟨⟨v⟩G0⟩Gi

- Round r: For each m received in r − 1 with new value v
▷ Gi ensures m has r + 1 nested signatures of different nodes (or ignores)
▷ Adds own signature, broadcasts ⟨m⟩Gi (r + 1 nested sigs)

- After round f , Gi receives 0 or more valid messages
▷ Deterministically combine values and output result

(e.g., take median or default to retreat if 0 valid messages)
• N nodes survives f failures even if N = f + 2 (no 1/3 threshold)

- But loses safety if synchrony assumption is violated
- That’s why most systems use partial/weak synchrony

3 / 20



Randomized protocols

• FLP proof considers delivering messages m and m′ in either
order

- Assumes if different recipients, either order leads to same state
- But logic only holds if messages are processed deterministically

• Paxos, Raft, PBFT “never get stuck”
- Means there’s always some network schedule that leads to

termination
- So keep trying “rounds” (views, ballots, terms, etc.) until one

terminates
• Non-termination assumes network is adversarial
• If were random, could have round termination probability

- Unfortunately, network typically can be controlled by adversary
- But adversarial network can’t predict randomness
- So can we make probability dependent on nodes’ random choices?

4 / 20



Asynchronous Binary Agreement (ABA)

• Simplest goal (agree on a single bit) still violates FLP
- Ben Or first proposed sidestepping FLP with randomness. . .

• N nodes (≤ f faulty) each receive one bit input {0, 1}
- Exchange messages and (ideally) output a bit

• Goals:
- Agreement – if any non-faulty node outputs b, none outputs ¬b
- Termination – if all non-faulty nodes receive input, all output a bit

▷ Since randomized, can terminate with probability 1
▷ E.g., infinite rounds each with finite termination probability

- Validity – if all correct nodes received input b, decision will be b
▷ Otherwise, okay to decide either 0 or 1

5 / 20



Ben Or protocol [BenOr’83]

function BENOR-ABA(i, x) ▷ i is local node id, x is input bit
for r ← 0; ; r ← r + 1 do

broadcast ⟨VOTE, i, r, x⟩
await VOTE from N− f distinct i ▷ including self
if ∃v s.t. more than (N + f )/2 VOTEs have x = v then

broadcast ⟨COMMIT, i, r, v⟩
else

broadcast ⟨COMMIT, i, r, ?⟩
await COMMIT from N− f distinct i ▷ including self
if ∃v ̸=? s.t. at least f + 1 COMMITs contain v then

x ← v
if more than (N + f )/2 COMMITS contain v then

output v
else

x ← random bit
• Claim: BENOR-ABA survives f Byzantine faults for N > 5f nodes

6 / 20

https://www.researchgate.net/profile/Michael_Ben-Or/publication/221344302_Another_Advantage_of_Free_Choice_Completely_Asynchronous_Agreement_Protocols_Extended_Abstract/links/5cc6aedc299bf120978754d9/Another-Advantage-of-Free-Choice-Completely-Asynchronous-Agreement-Protocols-Extended-Abstract.pdf


Ben Or analysis
• > (N + f )/2 nodes includes a majority of non-faulty nodes

- Majority of non-faulty nodes is > (N− f )/2 non-faulty nodes
- Plus f faulty nodes means > (N− f )/2 + f = (N + f )/2

• Hence, in a round, all non-faulty must COMMIT same v ̸=?

- But some or all non-faulty nodes may COMMIT ? instead
• If receive f + 1 COMMIT v ̸=?, know v must be correct

- After all, at most f of those nodes will be lying
• Say you receive COMMIT v from C nodes where C > (N + f )/2

- Each other node will see at least C− 2f COMMITs for v
▷ because f of your C could double-vote, and another f could be slow

- But since N > 5f , C− 2f > (N + f )/2− 2f > (5f + f )/2− 2f = f
- So every other non-faulty node will see at least f+1 COMMITs for v
- Means all other non-faulty nodes will terminate in next round

• Say you don’t see f + 1 COMMITs and flip a coin
- Could luck out and have all non-faulty nodes flip same value
- So protocol guaranteed to terminate eventually with probability 1!

7 / 20



Ben Or practicality

• So why not use Ben Or instead of PBFT?

- Only agrees on one bit, not arbitrary operation
- Exponential expected #rounds required when flipping coins

• What if N− f nodes got together and all flipped the same coin?
- Some honest nodes might see f + 1 COMMIT vr, some not
- But all who do will see the same vr in round r
- Let v′

r be the “common coin” flip
- If v′

r = vr, protocol terminates in round r + 1
• Would it work to say rth coin flip is rth digit of π in binary? No
• Problem: Adversary knows v′

r in advance and can influence vr

- Arrange for N− f − 1 to see f + 1 COMMIT ¬v′
r in round r − 1

- Ensures vr ̸= v′
r, allows same manipulation for round r + 1

- Never terminates so long as adversary is lucky in round 0
• What if adversary doesn’t know v′

r in advance?

8 / 20



Ben Or practicality

• So why not use Ben Or instead of PBFT?
- Only agrees on one bit, not arbitrary operation
- Exponential expected #rounds required when flipping coins

• What if N− f nodes got together and all flipped the same coin?
- Some honest nodes might see f + 1 COMMIT vr, some not
- But all who do will see the same vr in round r
- Let v′

r be the “common coin” flip
- If v′

r = vr, protocol terminates in round r + 1
• Would it work to say rth coin flip is rth digit of π in binary?

No
• Problem: Adversary knows v′

r in advance and can influence vr

- Arrange for N− f − 1 to see f + 1 COMMIT ¬v′
r in round r − 1

- Ensures vr ̸= v′
r, allows same manipulation for round r + 1

- Never terminates so long as adversary is lucky in round 0
• What if adversary doesn’t know v′

r in advance?

8 / 20



Ben Or practicality

• So why not use Ben Or instead of PBFT?
- Only agrees on one bit, not arbitrary operation
- Exponential expected #rounds required when flipping coins

• What if N− f nodes got together and all flipped the same coin?
- Some honest nodes might see f + 1 COMMIT vr, some not
- But all who do will see the same vr in round r
- Let v′

r be the “common coin” flip
- If v′

r = vr, protocol terminates in round r + 1
• Would it work to say rth coin flip is rth digit of π in binary? No
• Problem: Adversary knows v′

r in advance and can influence vr

- Arrange for N− f − 1 to see f + 1 COMMIT ¬v′
r in round r − 1

- Ensures vr ̸= v′
r, allows same manipulation for round r + 1

- Never terminates so long as adversary is lucky in round 0
• What if adversary doesn’t know v′

r in advance?
8 / 20



Common coin [Rabin’83]

• Tool: t-of-N threshold cryptography
- Public key algorithm, using standard public key (e.g., RSA)
- Private key broken into N shares, with t required to sign/decrypt

• Tool: deterministic/unique digital signature schemes
- Only one possible signature per public key and message
- E.g., RSA full-domain-hash, BLS. (Non-examples: Schnorr, DSA)

• Idea: let coin v′
r = ⟨r⟩K mod 2 for deterministic signature

- Private key K−1 split among agents with (N− f )-of-N threshold
- Now v′

r unpredictable, but computable by any N− f nodes
• Limitation: setting up common coin requires trusted dealer

- Or can use fancy crypto, but requires synchronous protocol

9 / 20

http://www.scs.stanford.edu/20sp-cs244b/sched/readings/common-coin.pdf


Common coin Ben Or

function BENORCC-ABA(i, x) ▷ i is local node id, x is input bit
for r ← 0; ; r ← r + 1 do

...
if ∃v ̸=? s.t. at least f + 1 COMMITs contain v then

x ← v
if more than (N + f )/2 COMMITS contain v then

output v
COMMONCOIN(r) ▷ participate but discard result

else
x ← COMMONCOIN(r) ▷ implicit private key share arg.

• Note Rabin proposed a different trick for common coin
- If bad network knows you need (N + f )/2 votes to decide, can

ensure some nodes see over, some under threshold
- So use common coin to select threshold from {N/2,N− 2f}
- Repeat R times, but only safe with probability 1− 2−R

10 / 20



Reliable broadcast (RBC) [Bracha]

• Sender PS has input h to broadcast to N > 3f nodes {Pi}
• Want:

- agreement – all non-faulty node outputs are identical
- totality – all non-faulty nodes output a value or none terminate
- validity – if PS non-faulty, then all non-faulty nodes output h

• Protocol
1. PS broadcasts VAL(h)
2. Pi receives VAL(h), broadcast ECHO(h)
3. Pi receives N− f ECHO(h) messages, broadcasts READY(h)
4. Pi receives f + 1 READY(h), broadcasts READY(h) [if hasn’t already]
5. Pi receives 2f + 1 READY(h), delivers h

11 / 20



RBC analysis

• Protocol
1. PS broadcasts VAL(h)
2. Pi receives VAL(h), broadcast ECHO(h)
3. Pi receives N− f ECHO(h) messages, broadcasts READY(h)
4. Pi receives f + 1 READY(h), broadcasts READY(h) [if hasn’t already]
5. Pi receives 2f + 1 READY(h), delivers h

• N− f nodes includes majority of non-faulty nodes
- READY from all non-faulty nodes has same h =⇒ agreement
- If PS non-faulty, will all contain PS’s input h =⇒ validity

• If 2f + 1 nodes send READY(h), then f + 1 will be non-faulty
- Those f + 1 will make all non-faulty nodes to broadcast READY(h)
- Since N > 3f , will get 2f + 1 broadcasting READY(h) =⇒ totality

12 / 20



Refining RBC

• Why doesn’t RBC directly give us consensus?
- Each node RBCs its input; take median (like Byz. generals)

- Don’t know when RBCs are done (else would violate FLP)
• What if h is big and PS has to send many copies?
• Tool: Erasure coding

- Turns t-block msg into N blocks, such that any t encoded blocks
are sufficient to reconstruct msg

- Example: use interpolation on (t − 1)-degree polynomial

• Tool: Merkel tree
- Let h = H(b)
- Can verify any bij from

h and path in tree

H(b0)∥H(b1)b

H(b00)∥H(b01)b0

b00 b01

H(b10)∥H(b11)b1

b10 b11

13 / 20



Refining RBC

• Why doesn’t RBC directly give us consensus?
- Each node RBCs its input; take median (like Byz. generals)
- Don’t know when RBCs are done (else would violate FLP)

• What if h is big and PS has to send many copies?

• Tool: Erasure coding
- Turns t-block msg into N blocks, such that any t encoded blocks

are sufficient to reconstruct msg
- Example: use interpolation on (t − 1)-degree polynomial

• Tool: Merkel tree
- Let h = H(b)
- Can verify any bij from

h and path in tree

H(b0)∥H(b1)b

H(b00)∥H(b01)b0

b00 b01

H(b10)∥H(b11)b1

b10 b11

13 / 20



Refining RBC

• Why doesn’t RBC directly give us consensus?
- Each node RBCs its input; take median (like Byz. generals)
- Don’t know when RBCs are done (else would violate FLP)

• What if h is big and PS has to send many copies?
• Tool: Erasure coding

- Turns t-block msg into N blocks, such that any t encoded blocks
are sufficient to reconstruct msg

- Example: use interpolation on (t − 1)-degree polynomial

• Tool: Merkel tree
- Let h = H(b)
- Can verify any bij from

h and path in tree

H(b0)∥H(b1)b

H(b00)∥H(b01)b0

b00 b01

H(b10)∥H(b11)b1

b10 b11
13 / 20



Refining RBC (continued)

• Change protocol to send VAL(h,bi, si), broadcast ECHO(h,bi, si)

- si is share of message, bi is proof that it is in hash tree with root h
• Wait for N− f ECHOmessages that permit reconstruction

before sending READY(h)
- Guaranteed after 2f + 1 READY(h)

• Idea: use techniques from RBC to improve ABA
- Know an input b is valid if you received it
- Also know b is valid if f + 1 nodes received it
- Everyone will learn b is valid if 2f + 1 nodes say it is

▷ Even if f fail, f + 1 will continue to vouch for b

14 / 20



Mostéfaoui ABA [Mostéfaoui’14]
functionMOSTÉFAOUI-ABA(i, x)

for r ← 0; ; r ← r + 1 do
values← ∅ ▷ values everyone will consider valid
broadcast ⟨VALID, i, r, x⟩
when ∃v s.t. received ⟨VALID, i′, r, v⟩ from f + 1 distinct i′

broadcast ⟨VALID, i, r, v⟩ if haven’t already
when ∃v s.t. received ⟨VALID, i′, r, v⟩ from 2f + 1 distinct i′

values← values ∪ {v}
when ∃w ∈ values and haven’t sent VOTE yet

broadcast ⟨VOTE, i, r,w⟩
when received N− f valid VOTEs (valid means w ∈ values)

s← COMMONCOIN(r)
if all N− f valid VOTEs contain the same value b then

x ← b
if b = s then output b

else
x ← s 15 / 20

http://www.scs.stanford.edu/20sp-cs244b/sched/readings/mostefaoui.pdf


Asynchronous common subset (ACS)

• N nodes {Pi} get input, all output subset of inputs. Want:
- validity – any non-faulty node output contains N− 2f non-faulty

node inputs
- agreement – if any non-faulty node outputs set V , all output same

set V
- totality – if N− f non-faulty nodes get input, all non-faulty produce

output

Node i submits v_i to RBC_i
while (fewer than N-f RBCs have delivered a value

&& fewer than N-f ABA instances have output 1) {
if (RBC_j delivers v_j)

Supply 1 as input to ABA_j
}
Supply 0 as input to any remaining ABAs
Output { v_j | ABA_j output 1 } [waiting for RBCs if needed]

• Why does this ACS work?
16 / 20



ACS continued

Node i submits v_i to RBC_i
while (fewer than N-f RBCs have delivered a value

&& fewer than N-f ABA instances have output 1) {
if (RBC_j delivers v_j)

Supply 1 as input to ABA_j
}
Supply 0 as input to any remaining ABAs
Output { v_j | ABA_j output 1 } [waiting for RBCs if needed]

• RBCs and ABAs output same at all non-faulty nodes =⇒
agreement
• N− f RBCs will deliver value (by totality of RBC) =⇒ totality

- All nodes will exit the while loop
- If ABAj = 1 at any non-faulty node, then RBCj will deliver vj

• At least N− f ABAs must output 1 =⇒ validity
- Hence at least N− 2f must correspond to non-faulty nodes

17 / 20



Consensus from RBC and ACS

• Strawman 1:
- Each Pi uses RBC to broadcast B oldest transactions
- Use ACS to pick N− f and take union of transactions
- Problem?

• Strawman 2:
- Pi uses RBC on random ⌊B/N⌋-sized subset of B transactions
- ACS as before
- Problem?

• Solution?
- Each node RBCs threshold encryption of ⌊B/N⌋ transactions
- Only decrypt after ACS complete
- Threshold allows decryption even if sender fails

18 / 20



Consensus from RBC and ACS

• Strawman 1:
- Each Pi uses RBC to broadcast B oldest transactions
- Use ACS to pick N− f and take union of transactions
- Problem? Wastes lots of bandwidth sending B around

• Strawman 2:
- Pi uses RBC on random ⌊B/N⌋-sized subset of B transactions
- ACS as before
- Problem?

• Solution?
- Each node RBCs threshold encryption of ⌊B/N⌋ transactions
- Only decrypt after ACS complete
- Threshold allows decryption even if sender fails

18 / 20



Consensus from RBC and ACS

• Strawman 1:
- Each Pi uses RBC to broadcast B oldest transactions
- Use ACS to pick N− f and take union of transactions
- Problem? Wastes lots of bandwidth sending B around

• Strawman 2:
- Pi uses RBC on random ⌊B/N⌋-sized subset of B transactions
- ACS as before
- Problem? Network can censor victim transaction

• Solution?

- Each node RBCs threshold encryption of ⌊B/N⌋ transactions
- Only decrypt after ACS complete
- Threshold allows decryption even if sender fails

18 / 20



Consensus from RBC and ACS

• Strawman 1:
- Each Pi uses RBC to broadcast B oldest transactions
- Use ACS to pick N− f and take union of transactions
- Problem? Wastes lots of bandwidth sending B around

• Strawman 2:
- Pi uses RBC on random ⌊B/N⌋-sized subset of B transactions
- ACS as before
- Problem? Network can censor victim transaction

• Solution? Use threshold encryption
- Each node RBCs threshold encryption of ⌊B/N⌋ transactions
- Only decrypt after ACS complete
- Threshold allows decryption even if sender fails

18 / 20



Putting it all together (HoneyBadger)

19 / 20



Discussion

• Would you use HoneyBadgerBFT for a network file system like
BFS?

- No - very high latency (10s of seconds) would give unusable
performance

- Also doesn’t take advantage of physical-layer multicast

• Why use HoneyBadgerBFT instead of PBFT?
- High throughput with many replicas, big batch sizes
- No need to worry about tuning timeouts

20 / 20



Discussion

• Would you use HoneyBadgerBFT for a network file system like
BFS?

- No - very high latency (10s of seconds) would give unusable
performance

- Also doesn’t take advantage of physical-layer multicast

• Why use HoneyBadgerBFT instead of PBFT?

- High throughput with many replicas, big batch sizes
- No need to worry about tuning timeouts

20 / 20



Discussion

• Would you use HoneyBadgerBFT for a network file system like
BFS?

- No - very high latency (10s of seconds) would give unusable
performance

- Also doesn’t take advantage of physical-layer multicast

• Why use HoneyBadgerBFT instead of PBFT?
- High throughput with many replicas, big batch sizes
- No need to worry about tuning timeouts

20 / 20


