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Administrivia

• Class web page: http://cs244b.scs.stanford.edu/
- All handouts, lecture notes are on line

• Please join edstem
- Can ask questions by noon on lecture day to influence lecture
- Also find teammates, delve into topics with more detail, etc.

• Each class will involve discussing papers
- Print, read the papers before class
- Class participation is required (or edstem if you have special

dispensation not to attend)
- You may get cold-called if you haven’t participated in a few lectures
- I will post discussion notes after lecture

• Zoom should work for SCPD (but please mute your mic)
• Please bring an 8.5”× 11” name card to lecture
• Staff mailing list: cs244b-staff@scs.stanford.edu

- Please email all staff rather than individual members
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Assignments

• Read papers before class
- Don’t take this lightly—should spend several hours reading

• Final project
- Perform a small research project in teams of 1–4 students
- Use ideas from papers we’ve discussed in class

• Schedule:
- April 11: Form team (can use mailing list to find teammates)
- April 18: Schedule meeting with me or CA to discuss project
- Shortly after meeting: project title and one paragraph
- May 27: Submit git repository, and revised title/paragraph
- June 3: Submit paper on project (up to 6 pages)
- June 7: Project presentations/demos (12:30pm–late)

• Grading primarily based on final project
- Adjusted based on class participation
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Why study distributed systems?

• Most real systems are actually distributed systems
• If you want fault-tolerance or scalability

- Must replicate or shard across multiple machines
• If you want systems that span administrative realms

- Web sites, peer-to-peer systems, communication systems
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Class topics

• Distributed programming models
• Dealing with failure, including Byzantine failure
• Scalability
• Techniques: Consensus, Replication, Consistency. . .
• Case studies: production systems at Google, Amazon, . . .
• A few Blockchain mechanisms

6 / 33



Outline

1 Administrivia

2 Remote procedure call

3 Consensus in asynchronous systems

7 / 33



Remote procedure call (RPC)

• Procedure calls are a well-understood mechanism
- Transfer control and data on single computer

• RPC’s goal is to make distributed programming look like as
much as possible like normal programming

- Code libraries provide APIs to access functionality
- RPC servers export interfaces accessible through local APIs
- See [Birrell] for good description of one implementation

• Implement RPC through request-response protocol
- Procedure call generates network request to server
- Server return generates response

• Good example of how distributed systems differ. . .
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Procedure vs. RPC

• Consider the following ordinary procedure:
bool add_user(string user, string password);

• Possible return values: true, false
• Now say you have an RPC version

- Must somehow set up connections, bind to server, think about
authentication, etc., but ignore all that for now

• What are the possible return values of add_user RPC?

1. true
2. false
3. “I don’t know”
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RPC Failure

• Normal procedure call has fate sharing
- Single process: if callee fails, caller fails, too

• RPC introduces more failure modes
- Machine failures at only one end (caller/callee)
- Communication failures

• Result: RPCs can return “failure” instead of results
• What are the possible outcomes after failure?

- Procedure did not execute
- Procedure executed once
- Procedure executed multiple times
- Procedure partially executed

• Many systems aspire to “at most once semantics”
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Implementing at most once semantics

• Danger: Request message lost
- Client must retransmit requests when it gets no reply

• Danger: Reply message may be lost
- Client may retransmit previously executed request
- Okay if operations are idempotent, but many are not

(e.g., process order, charge customer, . . . )
- Server must keep “replay cache” to reply to already executed

requests

• Danger: Server takes too long to execute procedure
- Client will retransmit request already in progress
- Server must recognize duplicate—can reply “in progress”
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Server crashes

• Danger: Server crashes and reply lost
- Can make replay cache persistent—slow
- Can hope reboot takes long enough for all clients to fail

• Danger: Server crashes during execution
- Can log enough to restart partial execution—slow and hard
- Can hope reboot takes long enough for all clients to fail

• Can use “cookies” to inform clients of crashes
- Server gives client cookie which is time of boot
- Client includes cookie with RPC
- After server crash, server will reject invalid cookie

12 / 33



Parameter passing

• Trivial for normal procedure calls
• RPC must worry about different data representations

- Big/little endian
- Size of data types

• RPC has no shared memory
- No global variables
- How to pass pointers
- How to garbage-collect distributed objects

• How to pass unions over RPC?
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Interface Definition Languages

• Idea: Specify RPC call and return types in IDL
• Compile interface description with IDL compiler. Output:

- Native language types (e.g., C/C++/Java/go/etc. structs)
- Code tomarshal (serialize) native types into byte streams
- Stub routines on client to forward requests to server

• Stub routines handle communication details
- Helps maintain RPC transparency, but. . .
- Still have to bind client to a particular server
- Still need to worry about failures
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C++ RPC-related systems in use today

• XML or JSON over HTTP – no IDL, hard to parse
• Cereal – C++11 structure serializer
• Google protobufs + gRPC, Apache Thrift

+ Compact encoding, defensively coded (protobufs)
+ Good support for incrementally evolving messages
– Complex encoding, no canonical representation

• Apache Avro – self-describing messages contain schema
• Cap’n Proto, Google FlatBuffers

+ Same representation in memory and on wire, very fast
– Less mature, non-deterministic wire format, bigger attack surface

• XDR (+ RPC) – used by Internet standards such as NFS
+ Simple, good features (unions, fixed- and variable-size arrays, . . . )
– Big endian, binary but rounds everything to multiple of 4 bytes
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http://uscilab.github.io/cereal/
https://developers.google.com/protocol-buffers/
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https://thrift.apache.org/
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http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc5531
http://tools.ietf.org/html/rfc1813


“Homework”

• Write and run a simple distributed application using RPC
- Use any of the technologies from previous slide
- Or any other RPC system you like

• We won’t grade it, but it will help with your project
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Case study: XDR

enum MyEnum { NO, YES, MAYBE };

struct MyMessage {
string name<16>; /* up to 16 characters */
string desc<>; /* up to 2^32-1 characters */
opaque cookie[8]; /* 8 bytes (fixed) */
opaque sig<16>; /* 0-16 bytes (variable-length) */
unsigned int u; /* Unsigned 32-bit integer */
hyper ii; /* Signed 64-bit integer */
MyEnum me; /* Another user-defined type */
int ia[5]; /* Fixed-length array */
int iv<>; /* Variable length array */
int iv1<5>; /* Up to 5 ints */
MyMessage *mep; /* optional MyMessage (or NULL) */

};

typedef MyMessage *OptionalMyStruct;
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XDR base types

• All numeric values encoded in big-endian order
• int, unsigned [int], all enums: 4 bytess
• bool: equivalent to “enum bool { FALSE, TRUE }”
• hyper, unsigned hyper: 8 bytes
• float, double, quadruple: 4-, 8-, or 16-byte floating point
• opaque bytes[Len] (fixed-size)

- Encoded as content + 0–3 bytes padding to make size multiple of 4
• string s<MaxLen>, opaque a<MaxLen> (variable-size)

- 4-byte length + content + (0–3 bytes) padding
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XDR containers and structs

• (Fixed) arrays – MyType var[n]
- Encoded as n copies of MyType

• Vectors – MyType var<> or MyType var<n>
- Can hold variable number (0–n) MyTypes
- Encoded as 4-byte length followed by that many
- Empty maximum length means maximum length 232 − 1 MyTypes

• Optional data – MyType *var

- Encoded exactly as MyType var<1>
- Note this means single “present” bit consumes 4 bytes

• struct – each field encoded in turn
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XDR union types

union type switch (simple_type which) {
case value_A:
type_A varA;

case value_B:
type_B varB;

/* ... */
default:
void;

};

• Must be discriminated, unlike C/C++
• simple_type must be [unsigned] int, bool, or enum
• Wire representation:

- 4-bytes for which + encoding of selected case
- Special void type encoded as 0 bytes
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Demo

git clone http://cs244b.scs.stanford.edu/xdrdemo.git

• References for demo
- C++ RPC library: https://github.com/xdrpp/xdrpp
- Go RPC library: https://github.com/xdrpp/goxdr
- XDR specification: RFC4506
- RPC specification: RFC5531
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Asynchronous systems1

• A theoretical model for distributed systems
- Consists of a set of agents exchanging messages
- No bound on message delays
- No bound on the relative execution speed of agents
- For convenience, model internal events such as timeouts as

special messages, so the “network” controls all timing

• Can’t distinguish failed agent from slow network
• Idea of model is to be conservative

- Want robustness under any possible timing conditions
- E.g., say backhoe tears fiber, takes a day to repair
- Could see messages delays a billion times more than usual

1Unrelated to “asynchronous IO” as used in event-driven systems.
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The consensus problem

Agent 1

in: 3
out:

Agent 2

in: 9
out:

Agent 3

in: 7
out:

messages

• Goal: For multiple agents to agree on an output value
Each agent starts with an input value

- Agents’ inputs may differ; any agent’s input is okay to output
• Agents communicate following some consensus protocol

- Use protocol to agree on one of the agent’s input values
• Once decided, agents output the chosen value

- Output is write-once (an agent cannot change its value)
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Properties of a consensus protocol

• A consensus protocol provides safety if. . .
- Agreement – All outputs produced have the same value, and
- Validity – The output value equals one of the agents’ inputs

• A consensus protocol provides liveness if. . .
- Termination – Eventually non-failed agents output a value

• A consensus protocol provides fault tolerance if. . .
- It can survive the failure of an agent at any point
- Fail-stop protocols handle agent crashes
- Byzantine-fault-tolerant protocols handle arbitrary agent behavior

Theorem (FLP impossibility result)
No deterministic consensus protocol guarantees all three of safety,
liveness, and fault tolerance in an asynchronous system.
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https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf


Bivalent states

Agent 1

in: 3
out: 9

Agent 2

in: 9
out: 9

Agent 3

in: 7
out: 9

messages

Recall agents chose value 9 in last example
• But a network outage could look like agent 2 failing
• If fault-tolerant, Agents 1 & 3 might decide to output 7
• Once network back, Agent 2 must also output 7

Definition (Bivalent)
An execution of a consensus protocol is in a bivalent state when the
network can affect which value agents choose.
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Univalent and stuck states

Definition (Univalent, Valent)
An execution of a consensus protocol is in a univalent state when
only one output value is possible. If that value is i, call the state
i-valent.

Definition (Stuck)
An execution of a [broken] consensus protocol is in a stuck state
when one or more non-faulty nodes can never output a value.

• Recall output is write once and all outputs must agree
- Hence, no output is possible in bivalent state

• If an execution starts in a bivalent state and terminates, it
must at some point reach a univalent state
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FLP intuition

• Consider a terminating execution of a bivalent system
• Letm be last message received in a bivalent state

- Callm the execution’s deciding message
- Any terminating execution requires a deciding message

• Suppose the network had delayedm
- Other messages could cause transitions to other bivalent states
- Then, receivingmmight no longer lead to a univalent state
- In this case, we saym has been neutralized

Overview of FLP proof.
1. There are bivalent starting configurations
2. The network can neutralize any deciding message
3. Hence, the system can remain bivalent in perpetuity
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There exists a bivalent state

Scenario A

Agent 1

in: 0
out: 0

Agent 2

in: 0
out: 0

Agent 3

in: 0
out: 0

messages

Scenario B

Agent 1

in: 1
out: 1

Agent 2

in: 1
out: 1

Agent 3

in: 1
out: 1

messages

• Assume you could have liveness with an agent failure
If all inputs 0, correct agents must eventually output 0

- Similarly, if all inputs 1, correct agents must eventually output 1
• Now say we start flipping one input bit at a time
• Find 0- and 1-valent states differing at only one input

- Suppose node with this differing input fails
- By assumption, the system nonetheless reaches consensus
- Hence output depends on network; at least one state was bivalent
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Any message can be neutralized

b

0

m

0

m

1
m

m

Letm be a deciding message for value 0 from state b
- Let’s assumem cannot be neutralized and derive a contradiction

• Consider a message schedule from b to a 1-valent state
- Ifm is on the path, it leads to a bi-valent state (so neutralized)
- Ifm is not on the path, append it to the (1-valent) path

• Applym to each node on the path
- Eithermwill lead to a bi-valent state (neutralized), or it will

produce differing univalent states on adjacent nodes c0 and c1
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Any message can be neutralized

c0

0

m

c1

1
m

m′

m′

Letm′ be the message that transitions between c0 and c1

• Ifm,m′ received by different agents, order won’t matter
- But if delivering bothmessages yields a 1-valent state, delivering

justm can’t yield a 0-valent state

• Hence,m andm′ were addressed to the same agent A, making
order significant

• Yet if A slow after c0, system must terminate without it
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Any message can be neutralized

c0

0

0
x1, . . . , xn

m

e
x1, . . . , xn

c1

1

1
x1, . . . , xn

m

m′

m m′,m

Consider a run that terminates without A
- Let x1, . . . , xn be the messages received (by nodes other than A)
- Let e be a univalent state reached during the run

• Deliver x1, . . . , xn to terminating states afterm
- Sincems and xs received by different nodes, can re-order
- Means e not univalent (leads to both 0- and 1-valent states)!

• Contradiction meansmmust be neutralized somewhere
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Coping with FLP

• This class will cover
- Many systems that require consensus
- Many techniques for consensus

• Safety is generally pretty important
• But can reasonably weaken liveness requirement

- Termination not guaranteed doesn’t mean it won’t happen
- If your algorithm prevents completely stuck states

. . .can often make it terminate “in practice”

• Can weaken asynchronous system assumption
• Can make agents non-deterministic

- Have all nodes flip a coin to pick value—might all pick same value
- Make it intractable for network to “guess” pathological delivery

100% accurately in perpetuity
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