Plan for next three lectures

- **Today: PBFT – classic BFT replication algorithm**
 - First practical algorithm, still quite relevant (e.g., hyperledger)
- **Wednesday: Randomized BFT algorithms**
 - Very different BFT techniques with different tools, trade-offs
- **Monday 4/25: Other topics in BFT, Streamlet**
 - Advances since 1999 (when PBFT published), blockchains
 - Partial synchrony
- **Then we switch gears and talk about higher-level systems**
Voting safety in fail-stop model

- Suppose you have N nodes with fail-stop behavior
- Pick a quorum size $T > N/2$
- If T nodes (a quorum) all vote for a value, output that value

 \[\text{E.g., Quorum A unanimously votes for 9, okay to output 9} \]
 - Nodes cannot change their vote
 - Any two quorums intersect \Rightarrow agreement

- **Problem: stuck states**

 - Failure could mean not everyone learns of unanimous quorum
 - Split vote could make unanimous quorum impossible
Voting safety in fail-stop model

- Suppose you have N nodes with fail-stop behavior
- Pick a quorum size $T > N/2$
- If T nodes (a quorum) all vote for a value, output that value
 - E.g., Quorum A unanimously votes for 9, okay to output 9
 - Nodes cannot change their vote
 - Any two quorums intersect \Rightarrow agreement

- Problem: stuck states
 - Failure could mean not everyone learns of unanimous quorum
 - Split vote could make unanimous quorum impossible
Voting safety in fail-stop model

Suppose you have N nodes with fail-stop behavior

Pick a quorum size $T > N/2$

If T nodes (a quorum) all vote for a value, output that value

- Nodes cannot change their vote
- Any two quorums intersect \implies agreement

Problem: stuck states

- Failure could mean not everyone learns of unanimous quorum
 \implies Split vote could make unanimous quorum impossible
What voting gives us

- You might get system-wide agreement or you might get stuck
 - Can’t vote directly on consensus question (what RSM op to apply)
- How do you know you agreed?
 - If more than $f = N - T$ nodes fail, will always get stuck
 - If $f + 1$ nodes see T votes, even if f fail one can spread word
Byzantine agreement

<table>
<thead>
<tr>
<th>Quorum A</th>
<th>Quorum B</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_0, \ldots, v_{N-T}, \ldots, v_T, \ldots, v_{N-1}$</td>
<td>$v_0, \ldots, v_{N-T}, \ldots, v_T, \ldots, v_{N-1}$</td>
</tr>
</tbody>
</table>

What if nodes may experience Byzantine failure?

- Byzantine nodes can illegally change their votes
 - In fail-stop case, safety required any two quorums to share a node
 - Now, any two quorums to share a *non-faulty* node

Safety requires: # failures $\leq f_S = 2T - N - 1$

Liveness requires: # failures $\leq f_L = N - T$
 - At least one entirely non-faulty quorum exists

For fixed N, bigger T means more safety, less liveness
 - Typically set $N = 3f + 1$ and $T = 2f + 1$ so $f_S = f_L = f$
Byzantine agreement

What if nodes may experience Byzantine failure?

- Byzantine nodes can illegally change their votes
- In fail-stop case, safety required any two quorums to share a node
- Now, any two quorums to share a non-faulty node

Safety requires: \# failures \(\leq f_S = 2T - N - 1 \)

Liveness requires: \# failures \(\leq f_L = N - T \)

- At least one entirely non-faulty quorum exists

For fixed \(N \), bigger \(T \) means more safety, less liveness

- Typically set \(N = 3f + 1 \) and \(T = 2f + 1 \) so \(f_S = f_L = f \)
What if nodes may experience Byzantine failure?

- Byzantine nodes can illegally change their votes
- In fail-stop case, safety required any two quorums to share a node
- Now, any two quorums to share a non-faulty node

Safety requires: \(\# \text{ failures} \leq f_S = 2T - N - 1 \)

Liveness requires: \(\# \text{ failures} \leq f_L = N - T \)

- At least one entirely non-faulty quorum exists

For fixed \(N \), **bigger** \(T \) **means more safety, less liveness**
- Typically set \(N = 3f + 1 \) and \(T = 2f + 1 \) so \(f_S = f_L = f \)
When has a vote succeeded?

- If $f_S + 1 = 2T - N$ nodes malicious, system loses safety
- Suppose $f_S + 1$ nodes all claim to have seen T votes for a
 - Can assume system is a-valent with no loss of safety
 - In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)
- Now say $f_L + f_S + 1 = T$ nodes all make same assertion
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

- If $f_S + 1 = 2T - N$ nodes malicious, system loses safety
- Suppose $f_S + 1$ nodes all claim to have seen T votes for a
 - Can assume system is a-valent with no loss of safety
 - In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)
- Now say $f_L + f_S + 1 = T$ nodes all make same assertion
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

If $f_S + 1 = 2T - N$ nodes malicious, system loses safety

- **Suppose $f_S + 1$ nodes all claim to have seen T votes for a**
 - Can assume system is a-valent with no loss of safety
 - In fact, $f_S + 1$ signed msgs = proof of system state (or unsafety)
- **Now say $f_L + f_S + 1 = T$ nodes all make same assertion**
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

We saw a quorum vote for \(a \)

- If \(f_S + 1 = 2T - N \) nodes malicious, system loses safety

 Suppose \(f_S + 1 \) nodes all claim to have seen \(T \) votes for \(a \)
 - Can assume system is \(a \)-valent with no loss of safety
 - In fact, \(f_S + 1 \) signed msgs = proof of system state (or unsafety)

- Now say \(f_L + f_S + 1 = T \) nodes all make same assertion
 - If > \(f_L \) fail, system loses liveness (0 correct nodes in whole system)
 - If ≤ \(f_L \) fail, ≥ \(f_S + 1 \) remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it
When has a vote succeeded?

- If \(f_S + 1 = 2T - N \) nodes malicious, system loses safety
- Suppose \(f_S + 1 \) nodes all claim to have seen \(T \) votes for \(a \)
 - Can assume system is \(a \)-valent with no loss of safety
 - In fact, \(f_S + 1 \) signed msgs = proof of system state (or unsafety)

Now say \(f_L + f_S + 1 = T \) nodes all make same assertion
 - If > \(f_L \) fail, system loses liveness (0 correct nodes in whole system)
 - If \(\leq f_L \) fail, \(\geq f_S + 1 \) remaining nodes can notify rest
 - So either catastrophe or all non-faulty nodes will eventually hear it