Plan for next three lectures

- Today: PBFT classic BFT replication algorithm
 - First practical algorithm, still quite relevant (e.g., hyperledger)
- Wednesday: Randomized BFT algorithms
 - Very different BFT techniques with different tools, trade-offs
- Monday 4/25: Other topics in BFT, Streamlet
 - Advances since 1999 (when PBFT published), blockchains
 - Partial synchrony
- Then we switch gears and talk about higher-level systems

Voting safety in fail-stop model

- Suppose you have N nodes with fail-stop behavior
- Pick a quorum size T > N/2
- If *T* nodes (a quorum) all vote for a value, output that value
 - → E.g., Quorum A unanimously votes for 9, okay to output 9
 - Nodes cannot change their vote
 - Any two quorums intersect \Longrightarrow agreement
- Problem: stuck states
 - Failure could mean not everyone learns of unanimous quorum
 - Split vote could make unanimous quorum impossible

Voting safety in fail-stop model

- Suppose you have N nodes with fail-stop behavior
- Pick a quorum size T > N/2
- If *T* nodes (a quorum) all vote for a value, output that value
 - E.g., Quorum A unanimously votes for 9, okay to output 9
 - Nodes cannot change their vote
 - Any two quorums intersect \Longrightarrow agreement
- Problem: stuck states
 - → Failure could mean not everyone learns of unanimous quorum
 - Split vote could make unanimous quorum impossible

Voting safety in fail-stop model

- Suppose you have N nodes with fail-stop behavior
- Pick a quorum size T > N/2
- If *T* nodes (a quorum) all vote for a value, output that value
 - Nodes cannot change their vote
 - Any two quorums intersect \Longrightarrow agreement
- Problem: stuck states
 - Failure could mean not everyone learns of unanimous quorum
 - → Split vote could make unanimous quorum impossible

What voting gives us

You might get system-wide agreement or you might get stuck

- Can't vote directly on consensus question (what RSM op to apply)
- How do you know you agreed?
 - If more than f = N T nodes fail, will always get stuck
 - If *f* + 1 nodes see *T* votes, even if *f* fail one can spread word

Byzantine agreement

• What if nodes may experience Byzantine failure?

- → Byzantine nodes can illegally change their votes
 - In fail-stop case, safety required any two quorums to share a node
 - Now, any two quorums to share a non-faulty node
- Safety requires: # failures $\leq f_S = 2T N 1$
- Liveness requires: # failures $\leq f_L = N T$
 - At least one entirely non-faulty quorum exists
- For fixed *N*, bigger *T* means more safety, less liveness
 - Typically set N = 3f + 1 and T = 2f + 1 so $f_S = f_L = f$

Byzantine agreement

- What if nodes may experience Byzantine failure?
 - Byzantine nodes can illegally change their votes
 - In fail-stop case, safety required any two quorums to share a node
 - Now, any two quorums to share a non-faulty node
- \rightarrow Safety requires: # failures $\leq f_{S} = 2T N 1$
 - *Liveness* requires: # failures $\leq f_L = N T$
 - At least one entirely non-faulty quorum exists
 - For fixed *N*, bigger *T* means more safety, less liveness
 - Typically set N = 3f + 1 and T = 2f + 1 so $f_S = f_L = f$

Byzantine agreement

- What if nodes may experience Byzantine failure?
 - Byzantine nodes can illegally change their votes
 - In fail-stop case, safety required any two quorums to share a node
 - Now, any two quorums to share a non-faulty node
- Safety requires: # failures $\leq f_S = 2T N 1$
- \rightarrow Liveness requires: # failures $\leq f_L = N T$
 - At least one entirely non-faulty quorum exists
 - For fixed *N*, bigger *T* means more safety, less liveness
 - Typically set N = 3f + 1 and T = 2f + 1 so $f_S = f_L = f$

- If $f_S + 1 = 2T N$ nodes malicious, system loses safety
- Suppose *f*_S + 1 nodes all claim to have seen *T* votes for *a*
 - Can assume system is *a*-valent with no loss of safety
 - In fact, *f*_S + 1 signed msgs = proof of system state (or unsafety)
- Now say $f_L + f_S + 1 = T$ nodes all make same assertion
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophy or all non-faulty nodes will eventually hear it

- If $f_S + 1 = 2T N$ nodes malicious, system loses safety
- Suppose f_S + 1 nodes all claim to have seen T votes for a
 - Can assume system is *a*-valent with no loss of safety
 - In fact, *f*_S + 1 signed msgs = proof of system state (or unsafety)
- Now say $f_L + f_S + 1 = T$ nodes all make same assertion
 - If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
 - If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
 - So either catastrophy or all non-faulty nodes will eventually hear it

\rightarrow If $f_S + 1 = 2T - N$ nodes malicious, system loses safety

• Suppose $f_S + 1$ nodes all claim to have seen T votes for a

- Can assume system is *a*-valent with no loss of safety
- In fact, *f*_S + 1 signed msgs = proof of system state (or unsafety)

• Now say $f_L + f_S + 1 = T$ nodes all make same assertion

- If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
- If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
- So either catastrophy or all non-faulty nodes will eventually hear it

• If $f_S + 1 = 2T - N$ nodes malicious, system loses safety

→ Suppose f_S + 1 nodes all claim to have seen T votes for a

- Can assume system is *a*-valent with no loss of safety
- In fact, *f*_S + 1 signed msgs = proof of system state (or unsafety)

• Now say $f_L + f_S + 1 = T$ nodes all make same assertion

- If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
- If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
- So either catastrophy or all non-faulty nodes will eventually hear it

- If $f_S + 1 = 2T N$ nodes malicious, system loses safety
- Suppose *f*_S + 1 nodes all claim to have seen *T* votes for *a*
 - Can assume system is *a*-valent with no loss of safety
 - In fact, *f*_S + 1 signed msgs = proof of system state (or unsafety)

 \rightarrow Now say $f_L + f_S + 1 = T$ nodes all make same assertion

- If $> f_L$ fail, system loses liveness (0 correct nodes in whole system)
- If $\leq f_L$ fail, $\geq f_S + 1$ remaining nodes can notify rest
- So either catastrophy or all non-faulty nodes will eventually hear it