What voting gives us

- You might get system-wide agreement or you might get stuck
- Can't vote directly on consensus question (i.e., log entry)
- What can we vote on without jeopardizing liveness?
 - 1. Statements that never get stuck (irrefutable), and
 - Statements whose hold on consensus question can be broken if stuck (neutralizable)

Paxos [Lamport]

- A *ballot* is a pair $\langle n, x \rangle$
 - n a counter to ensure arbitrarily many ballots exist
 - x a candidate output value for the consensus protocol
- Conceptually vote to commit and abort ballots
 - If a quorum votes to commit $\langle n, x \rangle$ for any n, it is safe to output x
- Invariant: all committed and stuck ballots must have same x
- To preserve: can't vote to commit a ballot before preparing it
 - Prepare $\langle n, x \rangle$ by aborting all $\langle n', x' \rangle$ with $n' \leq n$ and $x' \neq x$.
 - PREPARED message votes to abort all lower ballots not containing x (or all lower ballots period if previous is NULL)
- If ballot $\langle n, x \rangle$ stuck, neutralize by restarting with $\langle n+1, x \rangle$
 - Can prepare $\langle n+1,x\rangle$ even if $\langle n,x\rangle$ is stuck

- 0. Initially, all ballots are bivalent
- **1.** Agree that $\langle 1, g \rangle$ is prepared and vote to commit it
- **2.** Lose vote on $\langle 1, g \rangle$; agree $\langle 2, f \rangle$ prepared and vote to commit it
- **3.** $\langle 2, f \rangle$ is stuck, so agree $\langle 3, f \rangle$ prepared and vote to commit it
- **4.** See T votes to commit (3, f) (commit-valent) and externalize f
 - At this point nobody cares about $\langle 2, f \rangle$ —neutralized
- **5.** Node failure makes $\langle 3, f \rangle$ stuck, prepare and commit $\langle 4, f \rangle$

- 0. Initially, all ballots are bivalent
- **1.** Agree that $\langle 1, g \rangle$ is prepared and vote to commit it
- **2.** Lose vote on (1, g); agree (2, f) prepared and vote to commit it
- **3.** $\langle 2, f \rangle$ is stuck, so agree $\langle 3, f \rangle$ prepared and vote to commit it
- **4.** See T votes to commit $\langle 3, f \rangle$ (commit-valent) and externalize f
 - At this point nobody cares about (2, f)—neutralized
- **5.** Node failure makes $\langle 3, f \rangle$ stuck, prepare and commit $\langle 4, f \rangle$

- 0. Initially, all ballots are bivalent
- **1.** Agree that $\langle 1, g \rangle$ is prepared and vote to commit it
- **2.** Lose vote on $\langle 1, g \rangle$; agree $\langle 2, f \rangle$ prepared and vote to commit it
- **3.** $\langle 2, f \rangle$ is stuck, so agree $\langle 3, f \rangle$ prepared and vote to commit it
- **4.** See T votes to commit $\langle 3, f \rangle$ (commit-valent) and externalize f
 - At this point nobody cares about (2, f)—neutralized
- **5.** Node failure makes $\langle 3, f \rangle$ stuck, prepare and commit $\langle 4, f \rangle$

- 0. Initially, all ballots are bivalent
- **1.** Agree that $\langle 1, g \rangle$ is prepared and vote to commit it
- **2.** Lose vote on (1, g); agree (2, f) prepared and vote to commit it
- **3.** $\langle 2, f \rangle$ is stuck, so agree $\langle 3, f \rangle$ prepared and vote to commit it
- **4.** See T votes to commit (3, f) (commit-valent) and externalize f
 - At this point nobody cares about (2, f)—neutralized
- **5.** Node failure makes $\langle 3, f \rangle$ stuck, prepare and commit $\langle 4, f \rangle$

- 0. Initially, all ballots are bivalent
- **1.** Agree that $\langle 1, g \rangle$ is prepared and vote to commit it
- **2.** Lose vote on $\langle 1, g \rangle$; agree $\langle 2, f \rangle$ prepared and vote to commit it
- **3.** $\langle 2, f \rangle$ is stuck, so agree $\langle 3, f \rangle$ prepared and vote to commit it
- **4.** See T votes to commit (3, f) (commit-valent) and externalize f
 - At this point nobody cares about $\langle 2, f \rangle$ —neutralized
- **5.** Node failure makes $\langle 3, f \rangle$ stuck, prepare and commit $\langle 4, f \rangle$

- 0. Initially, all ballots are bivalent
- **1.** Agree that $\langle 1, g \rangle$ is prepared and vote to commit it
- **2.** Lose vote on $\langle 1, g \rangle$; agree $\langle 2, f \rangle$ prepared and vote to commit it
- **3.** $\langle 2, f \rangle$ is stuck, so agree $\langle 3, f \rangle$ prepared and vote to commit it
- **4.** See T votes to commit (3, f) (commit-valent) and externalize f
 - At this point nobody cares about (2, f)—neutralized
- **5.** Node failure makes $\langle 3, f \rangle$ stuck, prepare and commit $\langle 4, f \rangle$

Viewstamped replication [Oki]

view 1: $op_1 op_2 op_3 op_4$?

- Instead of voting on op_1, \ldots directly, vote on $\langle view\ \mathbf{1}, op_1 \rangle, \ldots$
 - Each (view, op) selected by a single *leader* for view, so irrefutable
 - E.g., chose leader by round-robin using view# mod N
 - Really, a vote is a promise to include $\langle \text{view 1}, \text{op}_1 \rangle$ in future views
- What if votes on op₄ and op₅ are stuck (e.g., leader fails)?
 - Neutralize by agreeing view 1 had only 3 meaningful operations
 - Vote to form view 2 that immediately follows (view 1, op₃)
- Failed to form view 2 (e.g., a node wants (view 1, op₄))?
 - Just go on to form view 3 after (view 1, op₄)

Viewstamped replication [Oki]

- Instead of voting on op_1, \ldots directly, vote on $\langle view \ \mathbf{1}, op_1 \rangle, \ldots$
 - Each (view, op) selected by a single *leader* for view, so irrefutable
 - E.g., chose leader by round-robin using view# mod N
 - Really, a vote is a promise to include $\langle \text{view 1}, \text{op}_1 \rangle$ in future views
- What if votes on op₄ and op₅ are stuck (e.g., leader fails)?
 - Neutralize by agreeing view 1 had only 3 meaningful operations
 - Vote to form view 2 that immediately follows (view 1, op₃)
- Failed to form view 2 (e.g., a node wants (view 1, op₄))?
 - Just go on to form view 3 after (view 1, op₄)

Viewstamped replication [Oki]

- Instead of voting on op_1, \ldots directly, vote on $\langle view\ \mathbf{1}, op_1 \rangle, \ldots$
 - Each (view, op) selected by a single *leader* for view, so irrefutable
 - E.g., chose leader by round-robin using view# mod N
 - Really, a vote is a promise to include $\langle \text{view 1}, \text{op}_1 \rangle$ in future views
- What if votes on op₄ and op₅ are stuck (e.g., leader fails)?
 - Neutralize by agreeing view 1 had only 3 meaningful operations
 - Vote to form view 2 that immediately follows (view 1, op₃)
- Failed to form view 2 (e.g., a node wants (view 1, op₄))?
 - Just go on to form view 3 after ⟨view 1, op₄⟩