
2-Phase Commit With a Blockchain Coordinator

Elliot Dauber and Isaac Cheriyuot
Stanford University

Abstract

The goal of this project is to remove the blocking
aspect of the classic 2-phase commit protocol over a
sharded database system. This most often becomes a
problem when the coordinator of a transaction (an in-
stance of 2-phase commit) shuts down. To solve this,
we created a system where most of the coordinator
functionality is pushed to an Ethereum smart contract,
which stores the state and controls the data flow of all
the 2-phase commit transaction, ensuring the client
and nodes will always be able to determine the out-
come of the transactions they care about. On top of
this, we built a system for managing nodes in the sys-
tem, adding new nodes, and recovering from node fail-
ure.

1. INTRODUCTION

Almost every application we use nowadays lives on
a distributed systems. While this has allowed for an
incredible increase in the scale and power achievable
by these applications it has also introduced a wealth
of new and challenging problems. One of the largest
of these problems is achieving consensus. In any dis-
tributed system there is information spread across dis-
parate nodes, where nodes can be anything from indi-
vidual machines to server warehouses. When attempt-
ing to store information in such a system we need to
guarantee that for any request all nodes involved in
said request are capable of executing it and do so to-
gether, thus having consensus on the overall state of
the system. The Two Phase Commit Protocol[2] is
one solution to this problem. At a high level, this
protocol consists of on coordinator who receives a re-
quest and a cohort of nodes that the request is for as
well as two distinct phases of processing. In the first

phase, the coordinator delegates commands to relevant
nodes in the cohort to execute the request, of which
they they vote on whether or not theses commands are
executable. All nodes involved must vote to commit in
order for the request to commit, at which time the co-
ordinator will send a commit message to the involved
nodes to which they must ack after executing the com-
mand before the request is considered fulfilled. A ma-
jor problem with this system arises when the coordina-
tor fails mid protocol. If the coordinator fails perma-
nently, some nodes will never complete their transac-
tions. After a node has sent an agreement message to
the coordinator, it will block until a commit or rollback
is received. In order to resolve this we have chosen to
replace the coordinator with a blockchain contract1 as
the chain is guaranteed to persist where as any coordi-
nator can fail. Here is the Github repo with the source
code: https://github.com/elliotdauber/2pc-blockchain

2. RELATED WORK

We used two main pieces of literature to build our
solution. The first is ”A New Presumed Commit Op-
timization for Two Phase Commit” one of the most
foundational papers in terms of modern two phase
commit protocols[2]. This paper informed our un-
derstanding of the two phase commit protocol and
how to construct one from the ground up. The sec-
ond piece ”Non-Blocking Two Phase Commit Using
Blockchain” outlines a blockchain two phase commit
protocol approaching the same problem from the same
angle as us and thus we used this as a basis for our own
implementation[1].

1We still have a coordinator but its only role is distributing
transactions and their corresponding contract address

1



3. DESIGN

3.1. CLIENT DESIGN (API)

Here is the (very simple) client API:

makeRequest(queries=Query[],
access=w,
block=True)

Each Query object has two required fields. Here is
the structure of the Query object:

struct Query {
pk: String,
sql: String

}

When the makeRequest API is invoked by the
client, the pk of each query is hashed, and the request
is sent over the internet to the system to be processed.
Along with the request is the address of a smart con-
tract on the Ethereum blockchain that is deployed by
the client library upon invocation of the API (section
3.3). For simplicity, the design is currently such that
each SQL query that is created must only touch one
PK. This can be easily changed to include , but for
the sake of time, we chose this design decision for the
time being. However, if a client wants to make a sin-
gle transaction that touches multiple PKs, it can simply
submit a transaction with multiple query objects.

Aside from the list of Query objects that must be
passed into each makeRequest API call, there are
two optional parameters that have default values:
access: This flag sets the access type for the

query – “r” (read) or “w” (write). By default, this is
set to “w”. It is most likely possible to infer the access
type from the sql query itself, but for simplicity in our
original design, we added this flag.
block: This flag tells the client library whether or

not to wait for the transaction to be completed before
moving on. This is most useful for write transactions
that must be completed before subsequent write trans-
actions can occur, and for read transactions where the
outcome is to be used in a subsequent transaction.

On blocking transactions, the client receives a
response from the system. For read transactions
that commit, the data is sent back in the form
SQLResponse[], where each SQLResponse ob-
ject is a list of the items that were read through the

query. For read transactions that don’t commit, the sta-
tus of the 2pc protocol (abort or timeout) is returned as
a string. For write transactions, the status is returned
no matter what.

3.2. NODE DESIGN

Every node in the system can act as both a coordi-
nator and cohort member in 2PC transactions, and can
handle as many transactions as the process can phys-
ically handle. Below we break down the node design
into its components

3.2.1 COORDINATOR DESIGN

When a node is sent a transaction from a client using
the makeRequest API, it becomes the coordinator
for that transaction. Then, using the directory struc-
ture it stores, it determines which nodes to send the
work to. Note that the coordinator may be a part of
the cohort, in which case it sends the data to itself.
Each node stores a database shard for a specific set of
PK’s, and the coordinator only sends the work specific
to those PKs to each node. This reduces the amount of
data sent over the internet.

Once the coordinator determines which nodes (the
cohort) to send the work to, it calls the request
method (section 4.2) on the smart contract deployed
by the client.

Once the contract is initialized, the coordinator
sends the work, along with the contract address and
some other data to each of the nodes in the transac-
tion’s cohort. The coordinator then replies to the client
with the contract address and some other data.

3.2.2 COHORT DESIGN

Upon receiving work from a coordinator, each node in
the cohort of a transaction does the following:

First, the node logs the address of the smart contract
associated with the transaction, as well as the work to
be done, to a log file on disk.

Then, the node determines whether or not it can do
the work, based on whether or not the node has com-
mitted to transacting on any of the PKs in the transac-
tion as well as if the table and entry being manipulated
exist. Based on this decision, the node votes on the
smart contract at the address provided by the coordi-
nator. If the node votes to commit, it adds the PKs in



the work to a set that is used to determine what work
can be committed to in future transactions. These PKs
are removed from the set when the node is sure that the
transaction has committed or aborted.

Once the node has determined work can be done, it
asynchronously waits on the Ethereum contract’s state
to be updated or for a set timeout to be reached. If
all involved nodes vote to COMMIT, the contract’s
state will be changed to COMMIT and all nodes will
know to commit the associate changes to their respec-
tive databases. Otherwise, the contract state will ei-
ther be set to TIMEOUT or ABORT, causing involved
nodes to abandon the associated work.

3.2.3 DIRECTORY DESIGN

Each node stores a data structure called a Directory
that stores data concerning which nodes contain the
database shards for any given PKs. This structure uses
consistent hashing to store and update the information,
using virtual nodes to reduce disruption when adding
or removing a node2 from the system.

We implement this by mapping randomly selected
unique SHA256 hash values to nodes where the num-
ber of hashes associated with a given node defines our
number of ”virtual nodes”. From here, to find the node
associated with a pk we take the SHA256 of our given
pk x and find the closest hash value less than x that
is mapped to a node. This node is responsible for the
data associated with our given pk. Thus we can add
and remove hash to node mappings to quickly add and
remove recognized nodes in our system. This can all
be seen in figure 1.

The Directory plays a central roll in allowing both
the coordinator node to send work to the cohort nodes
and allowing the cohort nodes to redistribute data
when necessary.

3.3. BLOCKCHAIN DESIGN

A new smart contract is created for every transac-
tion that a client initiates (one call from a client of the
makeRequest API). In other words, there is a sepa-
rate contract on the blockchain that handles each indi-
vidual transaction.

2We actually only store the URL of the node as the Directory
is primarily used for informing inter-node communication

Figure 1. (Bottom) We glue 0 and 2256 − 1 together, so that
objects are instead assigned to the node that is closest in the
counter-clockwise direction. This solves the problem of the
last object being to the left of the last Node. (Top) Adding
a new node N3. PK2 is reassigned from N3 to N4.

Each smart contract stores the state of the transac-
tion, and thus can be viewed as a state machine. The
possible states the contract can be in are INIT, VOT-
ING, COMMIT, ABORT, and TIMEOUT. The con-
tract also stores a string called data, which contains
the results of the SQL transactions for read requests.
Individual query results are separated by double semi-
colons (“;;”).

Each contract stores a timeout, which is determined
by the coordinator of the corresponding transaction.
This timeout is used to activate the TIMEOUT state
if a transaction has expired.

3.4. SYSTEM FLOW

Figure 2 is a diagram of the entire control and data
flow of the system. The number labels correspond to
the order of communication for a single write transac-
tion. Below is the action at each label. Note that for
read transactions, there is an extra step 8.5 where the



nodes send their read results to the contract using the
its set_data function.
1. The client deploys a smart contract for the transac-
tion on the Ethereum blockchain.
2. The Ethereum blockchain responds with the address
of the contract.
3. The client sends a transaction to the coordinator us-
ing the MakeRequest API.
4. The coordinator calls the request method on the
smart contract deployed by the client.
5. The coordinator responds to the client, signifying
that it has launched the smart contract.
6 6. The coordinator sends the work to the nodes. Its
work as a coordinator is now complete. Note that the
coordinator is not part of the coordinator in this exam-
ple, but that is a possibility.
7. The nodes log the smart contract address, as well as
the actual work to be done.
8. The nodes vote on the transaction using the
contract’s voter method, then periodically call its
getState method until there is a verdict.
9. The smart contract responds with the verdict.
10. If the verdict is COMMIT, the nodes transact on
their database shards.
11. The nodes respond to the client that they have com-
pleted the transaction.
12. If the transaction times out on the client side (it
doesn’t receive responses from all cohort nodes within
the timeout set by the coordinator), it queries the smart
contract for the verdict.
13. The smart contract responds with the verdict.

3.5. LIVENESS AND CORRECTNESS PROOF

We provide here a proof of the liveness of this sys-
tem – that is, that the system cannot block indefinitely
regardless of node failure. Note that this protocol does
not protect against client crashes or failures.

We begin with the client sending a transaction to
the coordinator using the makeRequest API. If the
coordinator crashes before sending a response to the
client, the client will timeout and check the smart con-
tract for the verdict. Under normal operation, the coor-
dinator first sets a timeout, which we will call ∆. Next,
at time t0, the coordinator initializes the smart contract
using its request method and passes in ∆. Let’s de-
note the time that the smart contract starts it timer as tb
Then, the contract will consider the transaction timed

Figure 2. The flow of communication throughout the entire
2-phase commit system for a write transaction. Note that
each of the nodes are running the same code, but that the
middle node is the coordinator for this particular transac-
tion, while the other two nodes are the cohort for this par-
ticular transaction.

out at time t0 +∆.
After this happens, the coordinator sends the time-

out, along with other data, to the other nodes and the
client. Let’s denote the time the client receives the
timeout tc and the time node i receives the timeout as
tni . We notice that t0 < tb < tc and tni .

For blocking transactions (set by the client through
the makeRequest API), the client waits for re-
sponses from each of the nodes in the cohort for the
given transaction for ∆ time. At time tc + ∆, if the
client has not received all of these responses, it checks
the smart contract for a verdict. The contract must
have either reached a verdict or timed out by time
tc + ∆ because tc > tb. Therefore, even if any nodes
crash, this protocol will reach an outcome.

We will now show that when a client reaches an out-
come, it is guaranteed that the cohort nodes for a trans-
action will have already seen that same outcome.

When the cohort nodes receive their work, they vote
on whether or not they can do the work. For blocking
transactions, if node i votes to COMMIT, it will then
repeatedly query the smart contract for a verdict. If
it sees a COMMIT or ABORT verdict before the con-
tract times out, it will send this verdict to the client. If
this message is the last one required for the client to
verify a verdict, it is guaranteed that the client will see
the same outcome as all of the nodes.

However, if node i sees a TIMEOUT, it is guaran-



teed that the client will also see a TIMEOUT because
both tc and tni are greater that tb. Once a contract is in
the TIMEOUT state, it cannot ever change state again,
so even if a node votes on a contract after timeout has
occurred, this will not affect the state of the contract,
and both the client and node will abort the transaction.

We have shown that due to the communication flow
and use of timeouts in our system, the algorithm is
both live and correct.

3.6. DYNAMIC NODE ALLOCATION

Understanding that in practice, any user may want
to scale or move a given database we added support for
dynamic node count. This allows for the addition or
removal of nodes to the system on the fly automatically
transferring data when necessary. In order for a node
to be added there must be no ID or URL conflicts and
a given node must first be able to ingest all the data
already assigned to pk’s in it’s range.

4. IMPLEMENTATION

The vast majority of our system is implemented in
Python, though the smart contract is implemented in
Solidity, for use on the Ethereum blockchain. We re-
alize that Python is slow compared to a language like
C++ or Go, but since this is our first time building a
distributed system, and there is a really nice library for
interaction with the Ethereum blockchain in Python,
we decided to write it in Python.

4.1. COMMUNICATION

In order to ease communication between the nodes
in our system (including all of the 2pc nodes and
the client nodes), we used the Python library GRPC,
which is a library for defining and executing remote
procedure calls (RPCs). Below we describe the vari-
ous RPCs that we implemented to facilitate communi-
cation in our system:
SendWork: This is the RPC that is invoked when

the makeRequest API is invoked at the client. This
request is sent to a random node (which acts as the co-
ordinator for the corresponding transaction), and con-
tains the following data: An array of Query objects,
with the PK hashed using SHA256; The url of the
client, so that the request can be responded to; The ac-
cess type of the transaction (“r” or “w”); The address
of the smart contract associated with the transaction;

The coordinator node responds to this RPC with the
timeout that it set for the transaction, and the number
of nodes that are required for the transaction to be con-
sidered complete (the cohort size).
ReceiveWork: This is the RPC that is invoked

by the coordinator for a transaction once it has re-
ceived a sendWork RPC from a client. After deter-
mining which nodes to send the work to (described in
section 3.2.3), the coordinator node sends this RPC to
each of the nodes that must carry out the work. It con-
tains the following data: An array of Query objects.
This is a subset of the query objects that the coordina-
tor received in the sendWork RPC, specifically only
the Query objects that are to be transacted on the given
node; The address of the smart contract that the coor-
dinator deployed, corresponding to the transaction that
is being carried out; The timeout that the coordinator
set for the transaction; The url of the client that started
the transaction; The access type of the transaction (“r”
or “w”);
AddNode: This is the RPC that is invoked by any

node looking to join a running system. It makes the
call to only one node in the existing system, lets call
this node the orchestrating node, with only information
describing itself (i.e. ID, URL, etc...). The orches-
trating node first checks for any ID or URL conflicts
in the Directory. If none exist, the orchestrating node
proceeds to set aside three unused virtual nodes from
our Directory. With these virtual nodes the orchestrat-
ing node proceeds to send a more detailed AddNode
RPC to each node whose virtual nodes overlap with
the newly proposed ones. This more detailed RPC in-
cludes the new nodes metadata, the proposed virtual
nodes, and the old virtual node that overlaps one of
the proposed ones. Nodes that receive the detailed
AddNode request, skip the aforementioned processes
and immediately retrieve any transactions from their
log that include pks that fall under the proposed vir-
tual nodes. If there are any such transactions the node
proceeds to make a MoveData request back to the
new node. If that completes successfully the new node
is added to the nodes directory and it returns a success.
If all nodes return success the orchestrating node also
adds the node to its directory and hands off the direc-
tory information to the new node.3.

3We want to note that while we thought adding dynamic node
allocation would a be cool feature our current implementation is



MoveData: This RPC can be invoked by any
node when going through the processes of adding a
new node to the system, upon receiving the request
the new node attempting to join the system simply
performs the transactions in the request, ignoring the
overhead of the ReceiveWork RPC.

4.2. BLOCKCHAIN IMPLEMENTATION

We based much of our smart contract implementa-
tion on the paper[1] we read, while also adding a few
new features. The smart contract is implemented as
such:
request(num_nodes, timeout): Initiates

the transaction, setting the state to VOTING, and set-
ting the number of nodes participating in the transac-
tion and the timeout for the transaction.
voter(vote, nodeid): Called from the co-

hort nodes, this function casts a vote on the transac-
tion (1 for commit, 2 for abort). Once the vote has
been counted, if the contract determines that the num-
ber of votes ≥ the number of nodes in the transaction,
the state is switched to COMMIT, unless any node has
voted to abort, in which case the state is switched to
ABORT.
set_data(data): Appends the data provided

by a node to the data string on the contract.
verdict(): Forces a verdict on the contract.

Specifically, if the contract is in the VOTING state
and the timeout has expired, the contract is set to the
TIMEOUT state. This is only called by a node or the
client once it is sure the timeout has expired.
getState(): Returns the current state of the

transaction as a string.
getData(): Returns the data associated with the

transaction as a string.

5. EXPERIENCES AND LESSONS
LEARNED

We learned a lot about building a system from the
ground up that has a lot of moving parts that all need
to be able to handle failures. That being said, there are
still many ways that our design and implementation
can be improved.

vulnerable to mid stage failures crippling the replication process
for the Directory or databases

One area for improvement is how we think about
abstractions. For example, we currently have the client
deploying the smart contracts and checking the them
for transaction status and data outcomes on timeout.
However, this is slightly strange because blockchain
credentials would need to be stored on the client,
which could be unsafe. It would be cleaner to imple-
ment a solution where the client doesn’t need to touch
the blockchain, but there is a tradeoff with the amount
of the work the coordinator should be doing.

6. CONCLUSIONS

We have improved the classic 2-phase commit pro-
tocol by implementing a non-blocking version that re-
lies on the Ethereum blockchain to serve as a coordi-
nator in transactions. Now, hen nodes go down or are
unresponsive due to network delays, clients can still
determine the outcomes of their transactions.

This project is a proof-of-concept and is not aim-
ing to beat any speed records in relation to the classic
2-phase commit protocol. This is supported by the de-
sign choice to implement the project in Python – we
wanted to be able to prototype and test these features
quickly, but were not focused on performance in the
context of speed. Thus, we have not provided any
quantitative evaluation of this project.

There is still work to be done to make this a sys-
tem that would work in a production environment,
but this project serves as a proof of concept for the
new 2-phase commit protocol. The costs to deploy
and transact on these Ethereum smart contracts is im-
practical for a high volume of requests. However,
as blockchains are becoming an increasingly popular
tool, it is reasonable to assume that these costs will
significantly decline in the future, making this system
more practical.

Additionally, this project shows the potential for the
blockchain to be utilized for even more aspects of the
system. Looking forward, we could see the blockchain
being used for node management, client-node com-
munication, logging, and more. Blockchains are an
extremely powerful tool for distributed systems engi-
neering because of their guarantees, and this project is
an example of how to get started about thinking about
blockchain integration into classic distributed systems
problem spaces.



References
[1] P. Ezhilchelvan, A. Aldweesh, and A. V. Moorsel. Non-

blocking two phase commit using blockchain, 2018.
https://dl.acm.org/doi/10.1145/3211933.3211940. 1, 6

[2] B. Lampson and D. Lomet. A new presumed
commit optimization for two phase commit, 1993.
https://www.vldb.org/conf/1993/P630.PDF. 1


